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Abstract

A popular method for detecting changes in the probability distribution of a sequence
of observations is CUSUM, which proceeds by sequentially evaluating a log-likelihood ratio
test statistic and comparing it to a predefined threshold; a change point is detected as soon
as the threshold is exceeded. It is desirable to choose the threshold in such a way that
the number of false detections is kept to a specified level while on the other hand ensuring
a quick detection if a change has occurred. In this paper we analyse the distribution of
the CUSUM stopping time when observations may be correlated, with the aim of devising
simple yet effective methods for selecting the threshold. In addition to the standard CUSUM
procedure we consider window-limited testing where only the n most recent observations
are considered at each time point. Traditionally, the number of false alarms is measured
by the average run length – the expected time until the first false alarm. However, this is
a reasonable criterion only when the expectation is finite. We thus propose an alternative
criterion that ensures a large average run length and is more generally applicable. We prove
that CUSUM is asymptotically optimal under this criterion, and investigate methods for
selecting the threshold such that it is approximately achieved. Apart from the above, we note
that the average run length criterion does not allow one to restrict the variability of false
alarms, which we argue can be crucial. Therefore, we make a case for a stronger false alarm
criterion, and show how it is related to the average run length. To illustrate the procedures
and evaluate their performance, we provide numerical examples featuring a multidimensional
state space model.

1 Introduction

False alarm control for change point detection procedures is an important problem in many appli-
cation domains ([19], Section 1.3). Many detection procedures feature a test statistic St in form
of a random walk in discrete time, with possibly dependent increments. A prominent example
of such a procedure is the method of cumulative sums (CUSUM) due to [14], in which case St
is the log-likelihood ratio (LLR) of the observations up to time t. The test statistic is computed
sequentially as new observations arrive, and compared to a threshold b. A change point is detected
as soon as St > b, which defines a stopping time T . One then seeks to choose a threshold that
ensures that the number of false alarms is kept low with respect to some appropriate criterion.
In existing literature on change point detection typically the average run length (ARL) – the
expected time until the first false alarm is raised – is considered as a performance criterion [2, 19].
Then a threshold is chosen such that at least in some asymptotic regime the ARL equals a desired
(large) constant. This criterion is, however, not always informative: in [13], examples are provided
where the ARL is infinite even though the detection delay is finite. Apart from this issue, we stress
that a large ARL does not ensure that the false alarm probability is low at every particular time
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instance: Even if the ARL is controlled to exceed a certain level, the variance of the stopping time
may still be large. This can be problematic: For example, in a reliability context, imagine one is
monitoring the status of many network elements. Then if the false alarm rate is highly variable, it
is not unlikely that false alarms are raised for a large number of elements at the same time, which
could cause the capacity of the technicians to attend to all (including true) alarms to be exceeded.
More generally, this argumentation applies to scenarios where multiple independent data streams
are to be monitored in parallel.
Consequently, more stringent false alarm criteria are desirable. Perhaps the best available candi-
date is a criterion based on the conditional probability of raising a false alarm that was proposed in
[11], and coined maximum local false alarm probability in [19]. However, this criterion is difficult
to evaluate: In their recent book [19] Tartakovsky et al. note that even an upper bound is lacking.
The difficulty arises from the fact that the distribution of the stopping time is hard to evaluate in
closed form, even if the distribution of the test statistic is known.
In view of the above, one wishes for further understanding of the distribution of the stopping time
as well as simple but effective methods for selecting the threshold such that the probability of
raising a false alarm is kept low in a stronger sense than allowed by the ARL criterion. Another
issue is that in practice testing the full history of observations may be computationally expensive,
and data points will typically not be stationary over a long period of time. This motivates one to
consider window-limited change point detection where data is tested in windows of fixed size; for
every new observation arriving the oldest observation is dropped.
In this paper, we first propose a new approach to false alarm control that still has the aim to
ensure a large ARL but is more generally applicable. This first part thus contributes to the more
traditional methodology of false alarm control. In the second part of the paper, we then suggest
a different approach: By limiting the number of false alarms at any given time point (which is
generally feasible if the threshold is allowed to be adaptive), one can ensure that the variability
of the number of false alarms is low and still achieve a large ARL. We therefore argue that the
probability of a false alarm at a given time serves better as a false alarm criterion than the ARL.
We now describe our contributions in more detail. In the first part of the paper we show that a
large ARL is achieved by restricting the probability of raising a false alarm before a fixed time
point. We prove that CUSUM (with or without windows) is still asymptotically optimal under
this modified false alarm criterion, and investigate methods for selecting the threshold such that
it is satisfied. To do this exactly, one would need closed form expressions for the distribution
of the stopping time. Since such expressions are not known in general, we first show how the
distribution of the window-limited stopping time can be described in terms of recursive integral
equations. For detection procedures without windows, integral equations have been derived based
on renewal theory [14, 16, 18]; here we follow a different approach, using results on the maximum
of autoregressive processes [21]. We remark that the obtained recursions are not restricted to
CUSUM but hold for a broad class of testing procedures including exponentially weighted moving
average schemes (EWMA, see [17]).
However, while we thus in principle know the exact distribution of the window-limited stopping
time, in general these expressions cannot be solved for the threshold other than numerically, and
the latter is only feasible for the left tail. We therefore provide non-asymptotic bounds for the
distribution of the CUSUM stopping time when windows are used as well as for testing without
windows. These bounds relate the distribution of the CUSUM stopping time to the crossing
probability of a random walk, and are therefore easier to evaluate. For example, we can then apply
available approximation methods to find a threshold (function) that ensures the proposed false
alarm criterion is satisfied. We compare the use of central limit theorem (CLT), large deviations
(LD) as well as extreme value (EV) approximations. The latter two methods allow one to obtain a
threshold function rather than a constant threshold; this increased flexibility can yield an improved
delay performance (see Section 4 as well as the example in [5].
We then define our second criterion, the probability of raising an alarm at a given time point, and
compare it to the ARL approach. This more stringent criterion has been applied in [3] for the
case of independent observations, but seemingly the benefit of this approach with respect to using
the ARL had not yet been noticed. We motivate its application and show how the aforementioned
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approximations can be used to select the threshold such that this criterion is achieved.
To illustrate the proposed methodologies, we apply the obtained procedures to test for a change
in mean in a state space model. The latter is of interest because it is a special type of hidden
Markov model; for this class of models it has been found in [13] that the ARL can be infinite. It
is moreover not a straightforward example because the observations are multivariate, and because
the size of the change is not fixed, but rather a function of t− k, where t is the current time and
k denotes the change point.
The paper is organized as follows. In Section 2 we define the change point detection problem and
the CUSUM method. In Section 3 we discuss our more general approach to ensure a large ARL.
We provide asymptotic optimality results for CUSUM in Section 3.1, and analyse the distribution
of the stopping time with applications for threshold selection in Sections 3.2 (when testing windows
of fixed size) and 3.3 (when testing the full history of observations). The alternative of limiting the
false alarm probability at any given time is discussed in Section 4. In Section 5 we show numerical
examples featuring a state space model. We conclude in Section 6.

2 Problem and Procedures

We are concerned with testing a stationary sequence of (possibly multidimensional) observations
(Vt) ∈ Rdv against a change in the underlying probability distribution. At every point in discrete
time a new observation arrives and is to be included in the test sample. That is, at time t ∈ N we
want to test the null hypothesisH0 of no change before time t against the alternativeH1 of a change
point k with k ∈ {1, . . . , t}. Note that the alternative is thus essentially a union of hypotheses
H1(k) that a change occurred at a specific time k. In practice, in view of computational expense
it may often be necessary to test data in windows of fixed size n, rather than keeping the whole
history of observations. In this case we restrict k to the set {t − n + 1, . . . , t}. Note that testing
the full history of observations can equivalently be regarded as testing with expanding windows:
At time t the size of the window to be tested is t. We take this viewpoint in the remainder of the
paper as it allows to treat both cases in a more unified manner. Throughout the paper we assume
that the observations are identically distributed under H0.
A testing procedure is optimal if it minimizes the detection delay (we define two commonly used
delay criteria in Section 3.1), subject to a condition on the number of false alarms. It is known that
the CUSUM method due to [14] is optimal in various settings; for further details see Section 3.1.
This motivates that we mostly focus on CUSUM in the current paper. The method is essentially
a sequential application of a LLR test. A sequence of LLRs can be regarded as a random walk
with random increments `(Vt) given by

`(Vt) := log
[
q
(
Vt |V t−11

)
/p
(
Vt |V t−11

)]
,

where p and q denote the observation densities under H0 and H1, respectively, and V t−11 :=
{V1, . . . , Vt−1}. Note that the sequence of observations may be correlated. We can thus identify
the LLRs corresponding to H1(1), . . . ,H1(n) with a Markov process

Y m :=
(
S1:n(m), . . . , Sn:n(m)

)′
, (1)

where

Sk:n(m) :=

n+m−1∑
i=k+m−1

`(Vi) , (2)

so that m ≥ 1 corresponds to the number of the first observation within the window that is to be
tested. If no windows are to be considered (i.e., in the case of expanding windows), then m = 1 is
fixed, and the size of the window n increases with time. We then write Sk:n := Sk:n(1) to simplify
the notation. To consider windows of fixed size n, let m increase with time instead.
The standard CUSUM testing procedure with expanding windows features the stopping time

τ = inf

{
n ≥ 1 : max

k∈{1,...,n}
Sk:n > b

}
. (3)
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If window-limited testing (with windows of fixed size) is desired, we define the stopping time to
be

ω := inf

{
m ≥ 1 : max

k∈{1,...,n}
Sk:n(m) > b

}
, (4)

The threshold is to be selected in such a way that the number of false alarms is kept at a desired
level. In practice, this is often done by simulation: The threshold is tweaked until the desired level
of false alarms is achieved. This approach is, however, only practical if one is aiming for a constant
threshold. In this paper we also provide methods for selecting the threshold as a function bn(k) of
k (corresponding to H1(k)) and n (the latter is only needed in Section 4). This greater flexibility
can yield performance improvements as discussed in Section 4.
In change point detection literature, typically the ARL E0T is considered as a false alarm per-
formance criterion, where T denotes the stopping time of the applied testing procedure, and E0

indicates that the expectation is evaluated with respect to P0, the measure under H0. In this paper,
we propose a method that ensures that the ARL exceeds the requested level yet is applicable even
if the ARL is infinite and thus irrelevant as a performance criterion. In addition, we argue that
it may be more desirable to fix the false alarm probability per window (fixed or expanding), thus
ensuring that the average number of false alarms is stable over time. The methods for achieving
both false alarm criteria differ depending on whether window sizes are fixed or increasing. Thus,
in summary, we consider the following four different false alarm criteria:

Control of:

Window size:

Fixed Expanding

ARL
(Section 3)

P0(ω ≤ N) ≤ α
(Section 3.2)

P0(τ ≤ N) ≤ α
(Section 3.3)

False alarms per
window (Section 4)

P0(ω = n|τ ≥ n) ≤ α
for all n

P0(τ = n|τ ≥ n) ≤ α
for all n

3 A New Approach to Traditional False Alarm Control

Traditionally, change point detection methods are designed such that the average time between
false alarms is large. Specifically, the ARL criterion requires that

E0T ≥ κ , (5)

for some given (large) constant κ. The following lemma shows that (5) can be achieved by choosing
a threshold that ensures

P0(T ≤ N) ≤ α , (6)

with appropriate N and α, where T = ω or T = τ , depending on whether or not window sizes are
fixed.

Lemma 1. If (6) holds for a stopping time T , then E0T ≥ κ is satisfied with κ = N(1− α).

Proof. By assumption, P0 (T ≤ N) ≤ α. Thus, for 1 ≤ h ≤ N we have

P0

(
T > h

)
≥ 1− α ,

which implies that

E0T ≥
N∑
h=1

(1− α) = N(1− α) .

4



Because the ARL can be infinite and is thus not always applicable as a false alarm criterion (see
[13] for examples), we propose to replace it by (6) in view of the lemma. If (5) is desired, then we
can simply express the required κ as N(1−α), which gives additional control when designing the
procedure. For example, if the maximum testing period is known to be bounded, then N could
represent the length of the period. Otherwise, one could specify κ and α as desired, and choose
N accordingly.

3.1 Asymptotic Optimality of CUSUM

It is known that if the CUSUM procedure with stopping time τ satisfies Eτ = κ, then it is optimal
with respect to certain delay criteria among all procedures that satisfy E0τ ≥ κ. However, in
practice it is usually not possible to achieve E0τ = κ because E0τ is not known in closed form.
Therefore, asymptotic optimality results are of interest which establish optimality of CUSUM
with τ satisfying E0τ ≥ κ asymptotically for large κ. (For details see, for example, [19], Ch. 8.)
Similarly, based on Lemma 1 we can prove asymptotic optimality of T ∈ {τ, ω} under (6).
Let more generally T be a stopping time with respect to the natural filtration F associated with the
observations. As before we write Pi and Ei, i ∈ {0, 1} for the probability measure and expectation
under Hi. Furthermore, we define Pk1 and Ek1 to be the probability measure and expectation under
H1(k).
The following delay criteria have been considered in the literature: the worst-case expected delay
due to [12]

sup
k≥1

ess sup Ek1
[
(T − k + 1)+

]
,

and the less pessimistic delay criterion

sup
k≥1

Ek1 [T − k |T ≥ k]

due to [15]. We now show that CUSUM is optimal among all procedures satisfying (6) with respect
to both delay criteria. To this end, we first prove an asymptotic lower bound on the detection
delay, similar to [11], Thm. 1. Then we show that this lower bound is attained for small α in
combination with large N . The proofs are deferred to the appendix.

Theorem 1. Suppose that for some positive constant I we have

lim
m→∞

P1
1

(
max

1≤t≤m
S1:t ≥ I(1 + δ)m

)
= 0 ∀δ > 0 . (7)

Assume that α := αN ≤ (logN)/N . Then

inf

{
sup
k≥1

ess sup Ek1
[
(T − k + 1)+ | Fk−1

]
: P0(T ≤ N) ≤ α

}
≥
{

sup
k≥1

Ek1 [T − k |T ≥ k] : P0(T ≤ N) ≤ α
}

≥
(
I−1 + o(1)

)
log
(
N(1− α)

)
.

as N →∞.

Proof. Suppose P0(T ≤ N) ≤ α. To simplify notation, define γN := log
(
N(1 − α)

)
. We show

that for any δ > 0,

P1
1

(
T − 1 ≥ (1− δ)I−1γN

)
→ 1 (8)

as N →∞. This then implies that

sup
k≥1

Ek1 [T − k |T ≥ k] ≥ E1
1[T − 1] ≥

(
I−1 + o(1)

)
γN .
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Since {T ≥ k} ∈ Fk−1, we have

ess sup Ek1
[
(T − k + 1)+ | Fk−1

]
≥ Ek1 [T − k |T ≥ k] ,

and we obtain the statement of the theorem.
To show (8), we consider the sets

Cδ :=
{
T < (1− δ)I−1γN , S1:T ≤ (1− δ2)γN

}
,

Cδ :=
{
T < (1− δ)I−1γN , S1:T > (1− δ2)γN

}
.

(i) Show that P1
1(Cδ)→ 0 for every 0 < δ < 1. First, we note that

P1
1(Cδ) =

∫
Cδ

dP1
1

dP0
dP0 =

∫
Cδ

eS1:TdP0 ≤ e(1−δ
2)γN P0(Cδ) .

Therefore, for N large enough such that α ≤ (logN)/N ≤ I, we have:

P1
1(Cδ) ≤ e(1−δ

2)γNP0(T < (1− δ)I−1γN )

≤
(
N(1− α)

)1−δ2
P0 (T ≤ N)

≤ (1− α)1−δ
2

N−δ
2

logN ,

which tends to zero as N →∞.

(ii) To prove that P1
1(Cδ)→ 0, we note that

P1
1(Cδ) ≤ P1

1

(
max

t≤(1−δ)I−1γN
S1:1+t ≥ I(1 + δ) (1− δ)I−1γN

)
;

the upper bound tends to zero by (7).

Next, we show that the lower bound is attained by ω, similar to [11], Thm. 4. Since ω ≥ τ almost
surely, this implies that the bound is also attained by τ , and thus, both are asymptotically optimal
under the conditions of the theorem.

Theorem 2. Assume that the threshold b = bN and the window size n = nN are chosen such that
P0(ω ≤ N) ≤ α, where α = αN → 0 as N →∞. Further assume that for some positive constant
I and m ∈ N we have

lim inf
N→∞

nNI/bN > 1 , (9)

lim
R→∞

sup
k∈{1,...,m}

ess sup Pk1

(
1

R

m+R∑
i=m

Xi < I
∣∣Fm−1) = 0 , (10)

Then we have:

sup
k∈N

ess sup Ek1
[
(ω − k + 1)+ | Fk−1

]
≤
(
I−1 + o(1)

)
bN (11)

where o(1)→ 0 as N →∞.

Proof. Let u ∈ N, k ∈ {1, . . . , n}, and define dN := bbN/Ic. By (9), we have that for large N

ess sup Pk1
(
ω − k + 1 > (u− 1) dN

∣∣Fk−1)
≤ ess sup Pk1

(
max

m∈{0,...,(u−1) dN+k−1}
max

l∈{1,...,dN}
Sl:dN (m) ≤ b

∣∣∣Fk−1) .
6



The RHS is upper bounded by

ess sup Pk1

 jdN+k−1∑
i=(j−1)dN+k

Xi < b ∀ 1 ≤ j ≤ u
∣∣∣Fk−1


= ess sup

u∏
j=1

Pk1

 jdN+k−1∑
i=(j−1)dN+k

Xi < b
∣∣∣F(j−1)dN+k−1

 .

By (10) we have that, for m ∈ N,

sup
k∈{1,...,m}

ess sup Pk1

bbN/Ic+m−1∑
i=m

Xi < bN
∣∣Fm−1

→ 0 ,

as N →∞. Hence, for any δ > 0 we can find N sufficiently large such that

Pk1

 jdN+k−1∑
i=(j−1)dN+k

Xi < b
∣∣∣F(j−1)dN+k−1

 ≤ δ .
Thus, we conclude that, for large N ,

ess sup Pk1 (ω − k + 1 > (u− 1) dN ) ≤ δu ,

in which case we have

sup
k≥1

ess sup Ek1
[
(ω − k + 1)+/dN

∣∣Fk−1] ≤ ∞∑
u=0

δu =
1

1− δ
.

Since we can do this for all δ > 0, this implies that

sup
k≥1

ess sup Ek1
[
(ω − k + 1)+

∣∣Fk−1] ≤ (I−1 + o(1)
)
bN ,

as N →∞.

For example, if observations are i.i.d., then the conditions (7) and (10) are satisfied with I the
Kullback-Leibler information number, I = E1

1`(V1) [11].
In summary, we have the following corollary.

Corollary 1. If b ∼ log
(
N(1 − α)

)
, α ≤ log(N)/N , and (7), (9) and (10) are satisfied with

I > 0, then ω is asymptotically optimal as N → ∞ in the sense that it minimizes the detection
delay among all stopping times T satisfying P0(T ≤ N) ≤ α.

In order to select a threshold that ensures (6), we need to be able to evaluate the distribution of
the stopping time. We focus on ω in Section 3.2 and turn to τ in Section 3.3. In both sections
we first provide results on the distribution of the stopping time, and then show how the threshold
function can be selected based on approximations to P0(T ≤ N).

3.2 Window-Limited Testing

First, we show an exact expression for the distribution of the stopping time ω in terms of iterated
integrals. Since these are hard to evaluate in practice, we then propose an EV approximation that
can be used to select the threshold in order to ensure (6).
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3.2.1 Exact Expression in Terms of Iterated Integrals

We show that the test statistic of a large class of change point detection procedures (including the
window-limited CUSUM procedure) can be expressed in form of a first order vector autoregressive
process (VAR(1)). We can then obtain the distribution of the corresponding stopping time using
results on the distribution of the maximum of autoregressive processes [21].
We are interested in finding an expression for

P0(ω ≤ m) = P0

(
∃j ∈ {1, . . . , n} : Mm,j > b(j)

)
, (12)

where Mm is the n-vector with j−th element

Mm,j := max
{
Sj:n(1), . . . , Sj:n(m)

}
= max

{
Y 1,j , . . . ,Y m,j

}
.

(13)

Note that the process Y m follows the recursion

Y m = Ψ(Y m−1) + ϑ1`(Vm+n) , (14)

where 1 denotes an n-vector of ones. To obtain the window-limited CUSUM procedure, ϑ is
set equal to one, and Ψ is defined as Ψ(y) = Cy, where C = (ci,j)i,j=1,...,n with ci,i+1 = 1 for
i = 1, . . . , n − 1 and ci,j = 0 otherwise. Interestingly, also other popular change point detection
methods can be expressed in this way: For example, to obtain an exponentially weighted moving
average (EWMA, see [17]) procedure based on LLRs, define Ψ(y) = (1 − ϑ)Cy for ϑ ∈ (0, 1).
Thus, while in this paper we are focussed on the CUSUM procedure, the result in Prop. 1 holds
more generally.
Note that (14) is a VAR(1) process, albeit with a degenerate noise process. A paper that gives
exact expressions (in terms of iterated Fredholm integrals) for the distribution ofMm for a VAR(1)
process is [21]. We adapt their results to our setting, the proof can be found in the appendix.
Let, for fixed x ∈ Rn,

Qm(x,y) := P (Mm ≤ x, Y m ≤ y) (15)

for m ≥ 0. Denote by xj the j−th entry of the vector x. Let min{x,y} be the componentwise
minimum of x and y. Let F be the distribution function of `(Vi).

Proposition 1. We have Qm(x,y) = KQm−1(x,y) for m ≥ 0, where

K h(y) =

∫
R
F

(
1

ϑ
min

i=1,...,n

{(
min{x,y} −Ψ(z)

)
i

})
dh(z) . (16)

Proof. We adapt the steps in the proof of [21], Thm. 3.1). Note that Mm ≤ x implies that Y l ≤ x
for l ≤ m, so Qm(x,y) = Qm

(
x,min{x,y}

)
. Then for m ≥ 1:

Qm(x,y)

= P0

(
Mm−1 ≤ x, Y m ≤ min{x,y}

)
= P0

(
Mm−1 ≤ x, ϑ1`(Vm+n) ≤ min{x,y} −Ψ(Y m−1)

)
= EF

[
P0

(
Mm−1 ≤ x, `(Vm+n) ≤ 1

ϑ
min

i=1,...,n

{(
min{x,y} −Ψ(Y m−1)

)
i

}∣∣∣ `(Vm+n)

)]
,

where the latter equation follows by invoking the law of total probability and Bayes’ rule, writing
EF for the expectation under F . With K as defined in (16) we can write this as KQm−1(x,y) as
claimed.

Thus, for P0 (Mm ≤ x) = Qm(x,∞) we obtain

K h(∞) =

∫
R
F

(
1

ϑ
min

i=1,...,n

{(
x−Ψ(z)

)
i

})
dh(z) . (17)
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In principle, this allows us to compute (12) as

P0(ω ≤ m) = 1− P0 (Mm,i ≤ b(i), i = 1, . . . , n) .

To evaluate this in practice, at least for small m one can use approximations based on the eigen-
values of the Fredholm kernel K (see [21]). However, we are aiming for expressions that can be
solved for the threshold function b(·). Therefore, even though P0(ω ≤ m) is known exactly, we are
interested in approximate expressions for the latter that are easier to evaluate.

3.2.2 Approximation for Threshold Selection

When testing is window-limited, we can apply EV theory to approximate the false alarm proba-
bility (6). This provides an easily applicable method to select b, which we outline in this section
for the example of Gaussian observations. Define

γi,j(h) := Cov(Y m,i,Y m+h,j)

(note that Cov(Y m,i,Y m+h,j) is indeed independent of m as we assume that observations are
i.i.d.). By application of a theorem in [1], we obtain the following corollary (the proof can be
found in the appendix).

Corollary 2. Assume that observations are i.i.d., and that σ > 1. Then the process (Mm) defined
by (13) satisfies

P0

(
Mm,i − (n− i+ 1)µ√

n− i+ 1σ
≤ am xi + cm, i = 1, . . . , n

)

→
n∏
i=1

exp
(
− exp(−xi)) , asm→∞ ,

where

am = (2 logm)−1/2 ,

cm = (2 logm)1/2 − 1

2
(2 logm)−1/2(log logm+ log 4π) .

Proof. It has been shown in [1] that as m→∞ the limiting distribution of the process of compo-
nentwise maxima of any standard Gaussian process coincides with that of n independent Gumbel
variables, provided that the following conditions hold:

|γi,j(0)| < r for i, j = 1, . . . , n, i 6= j , (18)
∞∑
h=1

|γi,j(h)|r <∞ for all i, j = 1, . . . , n . (19)

(The former condition was overlooked in [1] as has been noted in [8].)

We apply this theorem to the n-dimensional process M̃m with i−th component

Mm,i − (n− i+ 1)µ

σ
√
n− i+ 1

.

Note that
Sk:n(m)− (n− k + 1)µ

σ
√
n− k + 1

has a standard normal distribution, so that M̃m is indeed the process of componentwise maxima
of a standard Gaussian process.
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To verify (18), we note that, for l, k ∈ {1, . . . , n} with l > k,

Cov

(
Sk:n

σ
√
n− k + 1

,
Sl:n

σ
√
n− l + 1

)
=

1

σ
√
n− k + 1

, (20)

which is smaller than 1 by assumption.
Finally, (19) is satisfied because for k, l ∈ {1, . . . , n}, h ∈ N, we have

Cov

 n∑
i=k

`(Vi),

n+h∑
j=l+h

`(Vj)

 =
(
n−max{k, l + h}+ 1

)+
,

which is zero for h large enough.

Recall that we wish to choose a threshold function that yields

P0(ω ≤ N) = 1− P0(Mm,i ≤ b(i), i = 1, . . . , n) ≤ α .

Thus, for fixed N and n, Cor. 2 suggests to choose

b(β) =

[
− aN log

(
− 1

n
log(1− α)

)
+ cN

]
×
√
n(1− β)σ + n(1− β)µ+ δ ,

(21)

where the change point k is written as nβ + 1, β ∈ Bn := {0/n, 1/n, . . . , (n− 1)/n} (this notation
will turn out to be useful particularly in Section 3.3.2). The parameter δ is a design parameter
to be chosen based on simulation. Because cN → ∞, adding a constant δ (constant with respect
to N) is negligible for large N . Numerical experiments suggest that, for small n the choice δ = 0
seems to work well, however, for larger n, a negative δ should be chosen, possibly a function of the
other parameters. The precise determination of δ is left for future research. We suggest a choice
for δ in Section 3.3.2, for the case of expanding windows.

3.3 Testing With Expanding Windows

We first derive non-asymptotic bounds on the distribution of τ , which can then be used to apply
the CLT, LD and EV approximations to select the threshold. The latter two approaches yield
a threshold function rather than a fixed threshold, and the achieved false alarm performance is
overall closer to the desired level.

3.3.1 Non-asymptotic Bounds

The complication in evaluating P0(τ ≤ N) arises from the fact that this involves a double maximum
of a random walk:

P0 (τ ≤ N) = P0

(
max

1≤m≤N
max

1≤k≤m
Sk:m > b

)
.

In this section we provide bounds that circumvent this problem. The upper bounds we provide
below in (22) and (23) turn out to be very tight, particularly if the size of the change is large
(see Fig. 1). We use these in Section 3.3.2. We remark that similar bounds could be obtained for
P0(ω ≤ N), however, the adaptation to this case is straightforward and thus we do not provide
further details in this paper.
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First, note that we have

P0 (τ ≤ N) = P0

(
max

1≤m≤N
max

1≤k≤m
Sk:m > b

)
= P0

(
max

1≤m≤N
max

m≤n≤N
Sm:n > b

)
= P0

(
∃m ∈ {1, . . . , N} : max

m≤n≤N
Sm:n > b

)
= P0

(
min

1≤m≤N
τm ≤ N

)
,

where
τm =: inf{n ≥ m : Sm:n > b} .

Therefore, the CUSUM stopping time can be written as

τ = min
m≥1

τm .

Hence, we have

P0 (τ ≤ N) = P0

(
min

1≤m≤N
τm ≤ N

)
= 1− P0

(
min

1≤m≤N
τm > N

)
= 1− P0(τN > N)

N∏
i=2

P0 (τi−1 > N | τi > N) ,

which yields the bounds

1− P0(τN > N) ≤ P0 (τ ≤ N) ≤ 1−
N∏
i=1

P0(τi > N) . (22)

We furthermore note that the RHS is smaller than

1−
(

min
h∈{1,...,N}

P0(τh > N)

)N
= 1− P0

(
max

h∈{1,...,N}
S1:h ≤ b

)N
.

(23)

Approximations to (23) are available based on which we can devise simple yet effective procedures,
see Section 3.3.2.
As Fig. 1 shows, the upper bounds turn out to be very tight. The lower bounds are closer when
the size of the change is smaller. To see why this should be true, consider the following heuristic
argument. Since the mean µ of the LLR increments is negative, let us suppose that all increments
were negative. In this case Si:n < b would imply that Si−1:n < b, and hence τi > N would imply
that τi−1 > N . Thus, when µ is small compared to σ2, then P0(τ ≤ N) ≈ P0(τN ≤ N) =
P0(XN > b). One would thus expect that an alarm is typically raised at the end of the current
window, as is confirmed in numerical experiments (see Fig. 4).
We now discuss how the bound (23) can be used for threshold selection.

3.3.2 Approximations for Threshold Selection

From the upper bound (23) we obtain that a sufficient condition for P0(τ ≤ N) ≤ α is

1− P0

(
max

h∈{1,...,N}
S1:h ≤ b

)N
≤ α ,

11
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Figure 1: Comparison of P0(τ ≤ N) and the bounds provided
in (22) and (23), with N = 50, σ = 1 and threshold b = 0.5.

or, equivalently,

P0

(
max

h∈{1,...,N}
Sh:N > b

)
≤ 1− (1− α)1/N . (24)

Below we discuss different limiting regimes that yield approximations to (24). We focus on the case
of independent observations to keep the exposition simple. Note, however, that generalisations to
the case of dependent observations of the results we apply in this section are available.

EV Approximation As opposed to the approach in Section 3.2.2, we now consider the univari-
ate process of partial sums. That is, in this case we are interested in the maximum of Sk:N over
k ∈ {1, . . . , N}. Therefore, to achieve (24), the threshold function can be chosen as

b(β) =
√
N(1− β)σ

[
−aN log

(
− 1

N
log(1− α)

)
+ cN

]
+N(1− β)µ+ δ

(25)

where β ∈ BN . For choosing δ we recall our remark from the previous section that one may expect
that – at least for large changes – a change is rather detected at the end of the window, where a
single increment is considered. Thus, it seems intuitive to choose δ such that b

(
(N −1)/N

)
equals

the 1 −
(
1− (1− α)1/N

)
-quantile of the distribution of the LLR increments. It is confirmed in

numerical experiments that this choice indeed yields a good performance of the resulting testing
procedure, see the independent data example provided at the end of this section as well as the
example in Section 5.

LD Approximation Since we wish the false alarm probability α to be small, we may regard
this as a rare event scenario; this motivates us to invoke LD theory. Change point detection
procedures based on LD approximations have been considered in [3, 5, 9] for i.i.d. and VARMA
models, yielding a threshold function b(·) that depends on the assumed position of the change
point under the alternative hypothesis. We now explain how to obtain a threshold function from
LD approximations. We express the change point k via N , that is, we write k = Nβ + 1, where
β ∈ BN . First, note that

lim
N→∞

1

N
log P0

(
max
β∈BN

1

N
SNβ+1:N > b

)
= max
β∈BN

lim
N→∞

1

N
log P0

(
1

N
SNβ+1:N > b

)

12



(for details see [5], Section 2). LD theory suggests that for fixed β the false alarm probability can
be approximated by

P0

(
N−1SNβ+1:N > b(β)

)
≈ exp

(
−NI

(
b(β)

))
,

where I denotes a function specified below. Recall that we wish the false alarm probability to be
kept at a small level α. This suggests to pick the threshold function b such that it satisfies

1− (1− α)1/N = exp
(
−NI

(
b(β)

))
(26)

for all β ∈ BN . This choice entails that raising a false alarm is essentially equally likely irrespective
of the supposed location of the change point within the window, and it is therefore optimal in
terms of type II error performance; see [3], Ch. VI.E.
Now let us make the above more rigorous. The limiting logarithmic moment-generating function
Λ(λ) associated with the distribution of the LLR is defined as

Λ(λ) := lim
N→∞

1

N(1− β)
logMNβ(λ)

:= lim
N→∞

1

N(1− β)
log E0

(
eλSNβ+1:N

)
;

(27)

we assume for now that this function exists and is finite for every λ ∈ R. Define I as the Fenchel–
Legendre transform

I
(
b(β)

)
:= sup

λ∈R

(
λb(β)− (1− β) Λ(λ)

)
.

Provided that Λ(λ) exists for all λ ∈ R, noting that we can rescale as written out in (28), the
Gärtner–Ellis theorem [3, 4] yields

lim
N→∞

1− β
N(1− β)

log P0

(
1

N(1− β)
SNβ+1:N −

b(β)

1− β
> 0

)
= −I

(
b(β)

)
. (28)

In accordance with the idea expressed in (26), we choose the threshold function b(·) such that it
satisfies

− I(b(β)) = lim
N→∞

1

N
log P0

(
1

N
SNβ+1:N − b(β) > 0

)
=− γ (29)

for some positive γ = −N−1 log
(
1− (1− α)1/N

)
, across all β ∈ BN . Then asymptotically for

large N we have that (24) is satisfied.

CLT Approximation As an alternative, we consider the approximation of the false alarm
probability based on CLT arguments. Motivated by Donsker’s theorem, we can approximate the
probability in (24) by [18], Eq. (3.15),

P0

(
max
t∈[0,N ]

σBt + µ t > b

)
= 1− Φ

(
b− µN
σ
√
N

)
+ e

2bµ

σ2 Φ

(
−b− µN
σ
√
N

)
, (30)

where Bt is a standard Brownian motion (Wiener process). Then a fixed threshold b (rather than
a function as before) can be obtained numerically from setting (30) equal to 1− (1− α)1/N .

Independent Data Example For illustration we provide an example with independent data,
see Figs. 2–3. Note that when testing an independent sequence of N (0, ν) observations against a
shift in mean of size θ, then the LLR Sk:n(m) corresponding to testing against H1(k) is given by

Sk:n(m) =

n+m−1∑
i=k+m−1

`(Vi) =

n+m−1∑
i=k+m−1

θ

ν2

(
Vi −

θ

2

)
.
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Thus, under H0 the LLR increments are normally distributed with mean µ = −(θ/ν)2/2 and
variance σ2 = (θ/ν)2.
Application of the EV and CLT approximations is then straightforward. To apply the LD approx-
imation, we need to compute the limiting log-moment-generating function Λ(λ) in more explicit
terms (this way we also check that it indeed exists and is finite for all λ). Because the sequence
of observations is independent, with k = Nβ + 1, we can write the associated moment-generating
function as

MNβ(λ) = E0

[
exp

(
λ

N∑
t=k

log
q(Vt)

p(Vt)

)]

=

N∏
t=k

exp

[
λ

2
(λ− 1)

(
θ

ν

)2
]
.

With this expression we can compute a threshold function b(β) from

γ = sup
λ

{
λb(β) + (1− β)

λ

2
(1− λ)

(
θ

ν

)2
}

= I
(
b(β)

)
. (31)

The optimizing λ is 1/2+b(β)/
[
(1−β) (θ/ν)

2 ]
, so that from (31) we obtain the desired closed-form

expression for b(·):

b(β) = −1− β
2

(
θ

ν

)2

+
√

2γ (1− β)
θ

ν
. (32)

It is interesting to compare this to the EV threshold function (25): We note that in both cases
(up to scaling by N because the LD test statistic is divided by N) the threshold function is of the
form

b(β) = N(1− β)µ+
√
N(1− β)σ ζ(·),

where ζ(·) is some function of the parameters. This form is intuitively appealing: It makes sense
to select a threshold that exceeds the expected value of SNβ+1:N by some function of the standard
deviation.
Using the three different thresholds, we can evaluate P0(τ ≤ N) by Monte Carlo simulation. Fig.
2 shows that the performance in terms of false alarms is conservative, as was to be expected
because we approximate the upper bound (24) rather than P0(τ ≤ N) itself. Nevertheless, the
false alarm rates are close to the desired level α when the EV approximation is applied. The LD
approximation is more conservative, and the CLT approximation does not seem to adjust enough
for different α. The latter may be related to the fact that we have to solve for b numerically in
this case while in absolute terms 1− (1− α)1/N in (24) does not change much with α. Moreover,
it has also been found in Ch. III of [18] that the CLT approximation typically underestimates the
probability of interest. An explanation for this is that in (30) it is assumed that the maximum is
taken over a continuous (and thus larger) interval.
Fig. 3 displays the obtained delay values for various values of α. We evaluated the delay as the
average of the difference of the first detection time and the true change point. Note the trade-off
between the false alarm probability and the resulting delay for the LD and CLT approximation.
Interestingly, the EV approximation yields a higher delay even though the false alarm probability
is higher, suggesting that the shape of the threshold function does not match the shape of the
LLRs SNβ+1:N . (Note that this is not generally the case: for the state space model example
discussed in Section 5 the EV approximation achieves the better delay performance.)
To further investigate this issue, we plot a graph of the threshold function as well as the LLRs,
both as a function of β ∈ BN , see Fig. 4. Indeed, the distance between the EV threshold and the
LLR is not uniform across β. The shape of the LD threshold, however, matches the LLRs very
well. The figure also suggests that particularly when using the EV threshold, false alarms usually
occur at the end of the window. One may thus wonder whether setting the threshold equal to the
1 −

(
1− (1− α)1/N

)
-quantile of the distribution of the LLR increments. This choice, however,

14
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Figure 2: False alarm rates under criterion
P0(τ ≤ N) ≤ α, with θ = 2, N = 150, ν = 1.
Comparison for various α (indicated by the
dotted line).
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Figure 3: Delay values under criterion P0(τ ≤
N) ≤ α, with θ = 2, N = 150, ν = 1.
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the threshold functions devised in Section
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Figure 5: Delay values under criterion P0(τ ≤
N) ≤ α, with α = 0.01, N = 150, ν = 1.
Comparison for various values of the shift
size θ.

does not work well, the obtained false alarm rate is usually considerably higher than the desired
level (in this example it is close to 1). The figure shows clearly why a threshold function is to
be preferred with respect to a constant threshold: the CLT threshold is far away from the actual
LLRs, except when β is close to 1. Choosing a function is favourable particularly in view of the
detection delay, provided that it closely mimics the behaviour of the LLRs.
Fig. 5 shows a comparison of the delay for various choices of the shift size θ. As expected, the
delay performance improves as the shift size increases. We remark that, reassuringly, for different
choices of θ the resulting false alarm performance is highly similar to Fig. 2.

4 Better Control over False Alarms

As mentioned in the introduction, the ARL (or the false alarm criterion (6)) may not always be
restrictive enough, as is illustrated in Fig. 6. This figure shows the alarm ratio obtained when
testing a sequence of independent Gaussian observations with expanding windows. The position
of the change point is indicated by the vertical line. The threshold is chosen such that (6) is
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achieved. It can be seen that at the beginning of the period, where only a small number of data
points are tested, the false alarm ratio is too high but because it then decreases below the desired
level, the criterion is still satisfied. This also confirms once more that one should choose b to be
a function, rather than a constant threshold as is often assumed. With a constant threshold, as
the example shows, P0(τ ≤ N) ≤ α can only be achieved if P0(τ = 1) ≤ α. This is true more
generally: For the case of independent observations, it has been shown in [20] that the distribution
of τ is approximately geometric when the threshold b is large but constant.

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

Time

A
la

rm
ra

ti
o

Figure 6: Alarm ratios obtained when testing an i.i.d. Gaussian
sequence without windows. A constant threshold is chosen
such that E0τ ≥ N(1− α), where N = 1, 000 and α = 0.01.

In view of the above, we propose to choose a threshold function that limits the false alarm rate
for the current window to be α̃ (which can be related to α from before as outlined below). That
is, we require

P0(T = n |T > n− 1) = P0

(
max

k∈{1,...,n}
Sk:n > bn

)
= α̃ (33)

to hold, uniformly across all n, where T ∈ {τ, ω}. If T = ω, the above can be simplified because

P0(ω = 1) = P0(ω = n |ω > n− 1)

for any n. Note that

P0(T ≤ N) =

N∑
n=1

P0(T = n) , (34)

and

P0(T = n) = P0(T = n |T > n− 1) P0(T > n− 1)

= P0(T = n |T > n− 1)

(
1−

n−1∑
t=1

P0(T = t)

)
.

Using this recursive equation, it is possible to express each P0(T = n) in (34) in terms of conditional
probabilities of the form P0(T = n |T > n− 1). One obtains that P0(T = n) can be written as

P0(T = n |T > n− 1)

n−1∏
t=1

(
1− P0(T = t |T > t− 1)

)
.

Thus, in principle one can allow for α̃ to depend on the current window size n as well, and choose
a sequence of α̃n such that P0(τ ≤ N) ≤ α is achieved. For example, we can set

α̃1 =
α

N
, α̃n =

α

N

[
n−1∏
t=1

(1− α̃t)

]−1
. (35)
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Therefore, the condition (33) indeed allows a better control over the false alarm performance as
desired.
With respect to the maximum local false alarm probability suggested in [11] (cf. [19], Ch. 8), the
criterion (33) has the advantage of simplicity. Indeed, it is not known how the maximum local
false alarm probability can be evaluated, even approximately. In contrast, approximations for (33)
are readily available. For example, we can apply EV, LD and CLT approximations as in Section
3.3.2 with N replaced by n, and 1 − (1 − α)1/N replaced by α̃ (we give more details in Section
5.1 for the state space model). In order to ensure (33), we now need the threshold function to
depend on the current window size n. Thus, if the window size is fixed, the threshold function is
the same for every window. If windows are expanding, we obtain an adaptive threshold function.
In the latter case, it is all the more important that evaluation of the threshold function is simple
so that this can be carried out on-line as a new observation arrives.

Independent Data Example For illustration we consider again the independent data example
from Section 3.2.2, yet now false alarm rates are evaluated according to (33). See Fig. 7 for an
example with stopping time ω, which displays the probability P0(ω = 1) that is achieved on
average, for various choices of α̃ (for different shift sizes the false alarm behaviour remains very
stable). In comparison to the example in Section 4 we note that the LD and EV approximations
are closer but slightly above the desired false alarm rate. This may be explained by the fact that
in Section 3.3.2 we approximated an upper bound to P0(τ ≤ N) rather than the probability itself.
When windows are expanding (and the stopping time is τ and thresholds are adaptive), a very
similar false alarm performance is obtained.
Fig. 8 shows that with the sequence α̃n defined by (35) we indeed obtain a false alarm performance
similar to Fig. 2, where the threshold was chosen directly to achieve P0(τ ≤ N) ≤ α. The perfor-
mance in terms of delay is comparable to in Fig. 3, which is not surprising since the probability
P0(τ ≤ N) is the similar.
In summary, the two figures together confirm that (33) is a stronger false alarm criterion that
allows better control over the false alarms at any given time point.
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Figure 7: Comparison of probabilities P0(ω =
n|ω > n − 1) obtained with adaptive thresh-
olds chosen such that (33) is achieved with
n = 50, θ = 1, ν = 1, for various α̃ (indicated
by the dotted line).
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Figure 8: Comparison of probabilities P0(τ ≤
N) obtained with adaptive thresholds chosen
such that (33) is achieved, where the sequence
of α̃n is chosen according to (35) such that
P0(τ ≤ N) ≤ α holds as in (6), with N = 150,
θ = 1, ν = 1, for various α (indicated by the
dotted line).

We provide a more involved example in Section 5, which shows that for Gaussian observations the
procedures we proposed can also be applied when observations are not independent.
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5 State Space Model Example

We consider an example from [10] that features the following state space model of a sequence of
observations (Vt), time t being discrete, with a shift in mean at the change point k:

Xt+1 = AXt + Yt + Γ 1{t≥k} , Vt = BXt + Zt + Υ 1{t≥k} .

The dx-dimensional process (Xt) represents the unobserved state of the system, with state tran-
sition matrix A ∈ Rdx×dx that has eigenvalues within the unit circle, in which case the system is
stable [7]. The vectors Γ and Υ model the shift in mean. We assume that A, B, Q, R, Γ, and
Υ, are known, and that the Gaussian white noise processes Yt ∼ N (0, Q) and Zt ∼ N (0, R) are
independent.
Denote V ts := {Vs, . . . , Vt} for s, t ∈ N. The minimum variance estimator X̂t = E0

[
Xt |V t−11

]
for

the hidden state Xt can be computed efficiently using the well-known Kalman filter [for details
see e.g. [6]] as

X̂t = AX̂t−1 +Kt−1(Vt−1 −BX̂t−1) , X̂0 = x0 .

where Kt := AΣtB
′(BΣtB

′+R)−1 is the Kalman gain, and Σt = AΣt−1A
′+Q−Kt−1(BΣt−1B

′+
R)K ′t−1 is the state error covariance matrix. As a by-product the sequence of innovations is
obtained,

εt := Vt −B X̂t .

These represent the new information which is not contained in V t−11 . They are independent
Gaussian zero-mean vectors with covariance

Ωt := Cov(εt) = BΣtB
′ +R .

The persistent change in mean in Xt and Vt results in a dynamic change in the innovations; namely,
the shift in mean on εt is (see [2], Eq. (7.2.110))

ρ(t, k) = B
[
ψ(t, k)−Aζ(t− 1, k)

]
+ Υ,

where ψ(t, k) = Aψ(t − 1, k) + M , ζ(t, k) = Aζ(t − 1, k) + Kt ρ(t, k), with initial conditions
ψ(k, k) = 0, ζ(k−1, k) = 0. Thus, the objective is to test whether there is a change point at some
k ∈ {1, . . . , n}:

H0 : εt ∼ N (0, Ωt|t−1) versus H1 :

n⋃
k=1

[
H1(k) : εt ∼ N

(
ρ(t, k), Ωt|t−1

)]
with t ≥ k. That is, we have to test whether any of the hypotheses H1(k) holds.
Note that the signature ρ(t, k) of the change on the innovation depends upon both k and t during
the transient phase of the Kalman filter. Provided that Σt – the estimated covariance matrix of Xt

– converges to some matrix Σ as t grows large, it can be seen that the Kalman gain Kt converges
to K = ΣB′(BΣB′ + R)−1 ([2], Section 3.2.3.2). For conditions under which this holds see [6],
Section 7.3.1.2. The limit Σ (if it exists) can be obtained as the solution of the algebraic Riccati
equation

Σ−AΣA′ +AΣB′(BΣB′ +R)−1BΣA′ −Q = 0 .

In this case as in ([2], Eq. (7.2.112)) we have that asymptotically

ρ(t, k)→ B
(
I −A(I −KB)

)−1
Γ

+ (I −B
(
I −A(I −KB)

)−1
AK)Υ =: ρ .

Then it also holds that Ωt → BΣB′ +R =: Ω.
These limiting expressions are useful for obtaining approximations to the false alarm probability
as outlined in Sections 4. Moreover, they yield an approximation to the LLR test statistic that can
be computed in a recursive manner – in Section 5.3 we numerically evaluate the test performance
when the approximate LLR is used rather than the actual LLR.
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5.1 Design of the Testing Procedure

To illustrate the methodology proposed in Section 4, we now define the procedure for testing the
state space model against a shift in mean more explicitly. We first evaluate the LLR test statistic
Sk:n, for k ∈ {1, . . . , n}, n ∈ {1, . . . , N}.
The joint likelihood of V nk is given by

p
(
V nk
)

=

n∏
t=k

p
(
Vt |V t−11

)

=

n∏
t=k

exp
[
− 1

2

(
Vt −BX̂t

)
Ω−1t

(
Vt −BX̂t

)′]√
(2π)dv

∣∣Ωt∣∣ .

Thus we have that p(V nk ) =
∏n
t=k p(εt), where (abusing notation) p(·) denotes the density function

corresponding to its argument. Hence, we can write the LLR as

Sk:n =

n∑
t=k

ρ(t, k)′Ω−1t εt −
1

2
ρ(t, k)′Ω−1t ρ(t, k) . (36)

Note that this is not a backward recursion over k because the recursive computation of ρ(t, k)
proceeds forward. However, for large n− k we have

Sk:n ≈
n∑
t=k

`(εt) :=

n∑
t=k

ρ′Ω−1εt −
1

2
ρ′Ω−1ρ . (37)

We show numerically in Section 5.3 that the test performance remains good if the LLR (36) is
replaced by the approximate LLR (37). The mean and variance of the asymptotic likelihood
increments (under H0) are

µ = E
[
`(εt)

]
= −1

2
ρ′Ω−1ρ , σ2 = Var

(
`(εt)

)
= ρ′Ω−1ρ . (38)

Then the threshold function b can then be chosen as outlined in Section 4.

5.2 Threshold Selection

Using the explicit expressions obtained for µ and σ2, defining the threshold function according to
(25) is straightforward. We obtain the EV threshold

b(β) =

[
−an log

(
− 1

n
log(1− α)

)
+ cn

]√
n(1− β)ρ′Ω−1ρ− n(1− β)

1

2
ρ′Ω−1ρ+ δ , (39)

for β ∈ Bn, with an and cn as defined in Cor. 2, and δ chosen to be the (1 − α)-quantile of the
N (µ, σ2)-distribution.
For the CLT approximation we apply (30), replacing N by n and again using µ and σ as defined
in (38).
To obtain the LD based threshold, we can again proceed as in Section 3.3.2. Because the sequence
of innovations is independent, with k = nβ + 1, we can write the associated moment-generating
function as

Mnβ(λ) = E0

[
exp

(
λ

n∑
t=k

log
q
(
Vt |V t−1k

)
p
(
Vt |V t−1k

))] =

n∏
t=k

E0,t

[(
q(εt)

p(εt)

)λ]
,
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where, abusing notation, p and q refer to the distribution of their argument under H0 and H1(k)
respectively, and E0,t indicates that the expectation is taken with respect to p(εt). As in [5],
Section 3, we can evaluate this as

n∏
t=k

exp

[
λ

2
(λ− 1)ρ(t, k)′Ω−1t|t−1ρ(t, k)

]
.

Combining the above, we may take Λ(λ) ≈ λ
2 (λ − 1)ρ′Ω−1ρ as an approximation for Λ(·). This

can be used to compute a threshold function b(β) as

b(β) = −1− β
2

ρ′Ω−1ρ +
√

2(1− β)ρ′ Ω−1ρ γ , (40)

where γ = −n−1 log α̃.

5.3 Numerical Results

We now investigate the performance of the procedures defined in Section 5.1. In order to gain
insight regarding the impact of cross-correlation, we fix the diagonal entries of A to be A11 =
A22 = 0.5, and vary the off-diagonal entries (both are taken to be equal, A12 = A21). For various
shift sizes, we provide the achieved false alarm and detection rates when using thresholds obtained
based on EV, CLT or LD approximations. Further, we fix B = 0.5 I2, Q = R = I2, and α̃ and put
either Γ or Υ equal to 0. The resulting shift sizes are depicted in Fig. 9. The values plotted in
Figs. 10–11 were obtained by averaging the relative frequencies of false and true alarms obtained
over 10, 000 runs. The significance level α̃ is indicated by the horizontal dotted black line.

−0.4 −0.2 0 0.2 0.4
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Off-diagonal entries of A

ρ
1

Γ = (0, 0)′, Υ = (2, 2)′

Γ = (2, 2)′, Υ = (0, 0)′

Figure 9: Values for the shift size ρ (here ρ1 = ρ2).

The LD threshold yields false alarm rates that are consistently close to but slightly above the
specified level α, while the CLT threshold is conservative overall. The best false alarm performance
is achieved by the EV threshold. The delay values depend on the size of ρ: a larger change is
easier to detect (compare to Fig. 9). The accuracy of the CLT approximations seems to improve
when ρ is small. In this case ρ(t, k) is closer to ρ, even when t is small; this may explain why
the Brownian approximation works better in this case. Interestingly, the EV approximation works
better than the LD approximation in this example: both the false alarm rates as well as the delay
values are better.

6 Conclusion

In this paper we have proposed an alternative methodology to achieving the traditional ARL
criterion as well as a novel false alarm criterion. The latter allows to restrict the number of false
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Figure 10: False alarm rate per window and delay values with Γ = (0, 0)′, Υ = (2, 2)′ and α̃ = 0.05
(dotted line).
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Figure 11: False alarm rate per window and delay values with Γ = (2, 2)′, Υ = (0, 0)′ and α̃ = 0.05
(dotted line).

alarms at every given time point and was shown to be stronger than the ARL. Our main conclusion
is that the ARL criterion should be replaced by this alternative false alarm criterion, as the latter
allows a better control of the false alarm probabilities.
We moreover provided methods for the selection of the threshold such that the false alarm criteria
under consideration hold at least approximately. With respect to numerical methods for threshold
selection these are more easily applicable, and moreover allow the selection of a threshold function
rather than a constant threshold. We investigated the performance of the resulting detection
procedures in numerical examples. In terms of false alarm performance, the EV approximation
was usually closest to the desired level. However, the LD threshold function typically mimicked the
shape of the LLRs more closely, and thus yielded the best trade-off between false alarm and delay
performance. We also saw that a threshold function generally is to be preferred in comparison to
a constant threshold (and accordingly the EV and the LD threshold functions outperformed the
constant CLT threshold).
A topic for future research is the improvement of the EV approximation: We saw that a shift
of the resulting threshold function yields a good false alarm performance; however, it should be
determined what the optimal size of that shift is, depending on the parameters. Furthermore,
the LD approximation requires the evaluation of the limiting logarithmic moment generating
function of the LLR. In this paper, we only provided these computations for the case of Gaussian
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observations. Similarly, for the EV approximation we assumed Gaussian observations. In future
research other distributions should also be considered in more detail.
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