# Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms

Julia Kuhn,
The University of Queensland, University of Amsterdam
Yoni Nazarathy, UQ
Michel Mandjes, UvA

13 October 2014

## What is a bandit problem?



#### Multiarmed Bandit Problem





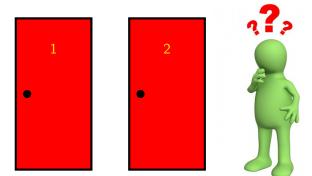
#### Multiarmed Bandit Problem



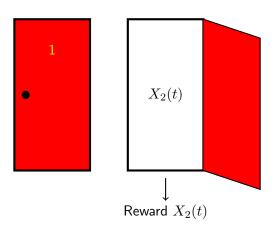


Pick k out of d arms at every decision time. States are resting unless the arm is played. These are the classical bandit problems. An optimal policy is the Gittins index.

## **Decision Problem**



## **Decision Problem**



#### Restless Bandit Problems

P. WHITTLE (1988):

Restless bandits: Activity Allocation in a Changing World.

## Partially Observable

# Partially Observable

Exploration vs. Exploitation:

Should we collect new information or opt for the immediate payoff?

## Partially Observable Restless Bandit Problems

K. LIU and Q. ZHAO (2010):

Indexability of Restless Bandit Problems and Optimality of Whittle Index for Dynamic Multichannel Access.

- 1 Bandit Problems
- Model Formulation
- 3 Index Policies
- 4 Whittle Index: Structural Results
- Parametric Index: Many-Arms Asymptotic Behaviour

## States vs. Belief States

State processes are assumed to be Gaussian autoregressions of order 1 (AR(1)),

$$X_i(t) = \varphi X_i(t-1) + \varepsilon_i(t),$$

where  $\varphi \in (0,1)$ , and  $\varepsilon_i(t) \sim \text{i.i.d. } \mathcal{N}(0,\sigma^2)$ .

## States vs. Belief States

State processes are assumed to be Gaussian autoregressions of order 1 (AR(1)),

$$X_i(t) = \varphi X_i(t-1) + \varepsilon_i(t),$$

where  $\varphi \in (0,1)$ , and  $\varepsilon_i(t) \sim \text{i.i.d. } \mathcal{N}(0,\sigma^2)$ .

**Belief state** of arm i at time t:

$$\mu_{i}(t) := \mathbb{E}\left[X_{i}(t) \mid X_{i}(t - \eta_{i}(t)), \eta_{i}(t)\right] = \varphi^{\eta_{i}(t)} X_{i}(t - \eta_{i}(t)),$$
  
$$\nu_{i}(t) := \operatorname{Var}\left(X_{i}(t) \mid X_{i}(t - \eta_{i}(t)), \eta_{i}(t)\right) = \sigma^{2} \frac{1 - \varphi^{2\eta_{i}(t)}}{1 - \varphi^{2}},$$

where  $\eta_i(t) := \min\{h \ge 1 | a_i(t-h) = 1\}.$ 

# Why is the Gaussian model special?

## Why is the Gaussian model special?

• The belief states  $(\mu_i(t), \nu_i(t))$  contain all relevant information available at time t.

# Why is the Gaussian model special?

- The belief states  $(\mu_i(t), \nu_i(t))$  contain all relevant information available at time t.
- At the same time,  $\mu_i(t)$  and  $\nu_i(t)$  quantify the expected gain from exploiting an arm vs. the need for exploring it.

## Belief State Evolution

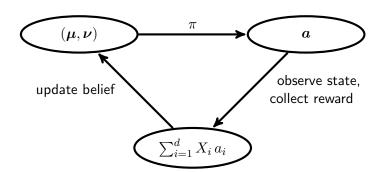
$$(\mu_i(t+1), \nu_i(t+1)) = \begin{cases} (\varphi \,\mu_i(t), \,\varphi^2 \,\nu_i(t) + \sigma^2), & a_i(t) = 0, \\ (\varphi \,Y_{\mu_i(t), \nu_i(t)}, \,\sigma^2), & a_i(t) = 1. \end{cases}$$

## Belief State Evolution

$$(\mu_i(t+1), \nu_i(t+1)) = \begin{cases} (\varphi \,\mu_i(t), \,\varphi^2 \,\nu_i(t) + \sigma^2), & a_i(t) = 0, \\ (\varphi \,Y_{\mu_i(t), \nu_i(t)}, \,\sigma^2), & a_i(t) = 1. \end{cases}$$

⇒ Markov Decision Process

#### Chain of Actions



## Objective

Find a policy  $\pi$  so as to maximize the *total expected discounted* reward criterion,

$$V^{\pi}(\boldsymbol{\mu}, \boldsymbol{\nu}) := \lim_{T \to \infty} \mathbb{E}^{\pi}_{\boldsymbol{\mu}, \boldsymbol{\nu}} \left[ \sum_{t=0}^{T} \beta^{t} \sum_{i=1}^{d} X_{i}(t) \, a_{i}(t) \right], \quad \beta \in (0, 1),$$

## Objective

Find a policy  $\pi$  so as to maximize the *total expected discounted* reward criterion,

$$V^{\pi}(\boldsymbol{\mu}, \boldsymbol{\nu}) := \lim_{T \to \infty} \mathbb{E}^{\pi}_{\boldsymbol{\mu}, \boldsymbol{\nu}} \left[ \sum_{t=0}^{T} \beta^{t} \sum_{i=1}^{d} X_{i}(t) \, a_{i}(t) \right], \quad \beta \in (0, 1),$$

or the average expected reward criterion,

$$G^{\pi}(\boldsymbol{\mu}, \boldsymbol{\nu}) := \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}^{\pi}_{\boldsymbol{\mu}, \boldsymbol{\nu}} \left[ \sum_{t=0}^{T-1} \sum_{i=1}^{d} X_i(t) \, a_i(t) \right].$$

# Objective

Find a policy  $\pi$  so as to maximize the *total expected discounted* reward criterion,

$$V^{\pi}(\boldsymbol{\mu}, \boldsymbol{\nu}) := \lim_{T \to \infty} \mathbb{E}_{\boldsymbol{\mu}, \boldsymbol{\nu}}^{\pi} \left[ \sum_{t=0}^{T} \beta^{t} \sum_{i=1}^{d} X_{i}(t) \, a_{i}(t) \right], \quad \beta \in (0, 1),$$

or the average expected reward criterion,

$$G^{\pi}(\boldsymbol{\mu}, \boldsymbol{\nu}) := \liminf_{T \to \infty} \frac{1}{T} \mathbb{E}^{\pi}_{\boldsymbol{\mu}, \boldsymbol{\nu}} \left[ \sum_{t=0}^{T-1} \sum_{i=1}^{d} X_i(t) \, a_i(t) \right].$$

Note that we can replace  $X_i(t)$  by  $\mu_i(t)$ !

# How to find a good policy?

# How to find a good policy?

Dynamic programming is typically intractable in practice.

## **Index Policies**

An index policy is of the form

$$\pi_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \underset{\boldsymbol{a}: \sum_{i=1}^{d} a_{i} = k}{\operatorname{arg max}} \left\{ \sum_{i=1}^{d} \gamma(\mu_{i}, \nu_{i}) a_{i} \right\}$$

The index function  $\gamma$  maps the belief state of each arm to some priority index.

# Examples for Index Functions

|            | (I-)                        | $=\mu$                                                       |
|------------|-----------------------------|--------------------------------------------------------------|
| Parametric | $\gamma^{\theta}(\mu, \nu)$ | $=\mu+\theta\nu,\theta>0$                                    |
| Whittle    | $\gamma^W(\mu,\nu)$         | $=\inf\left\{\lambda \pi_{opt}^{\lambda}(\mu,\nu)=0\right\}$ |

- Bandit Problems
- 2 Model Formulation
- 3 Index Policies
- Whittle Index: Structural Results
- 5 Parametric Index: Many-Arms Asymptotic Behaviour

#### Definition

$$\gamma^W(\mu, \nu) = \inf \left\{ \lambda \, | \, \pi_{\mathsf{opt}}^{\lambda}(\mu, \nu) = 0 \right\}$$

Here  $\pi^{\lambda}_{\mathrm{opt}}$  is the optimal policy for a

one-armed bandit problem with subsidy,

where the decision maker observes and collects the reward when playing, and obtains a subsidy  $\lambda$  otherwise.

# Dynamic Programming Operator

Let  $Tv := \max_{a \in \{0,1\}} T_a v$ , where

$$T_a v\left(\mu,\nu\right) := \begin{cases} \lambda + \beta \, v(\varphi \, \mu, \, \varphi^2 \nu + \sigma^2), & a = 0, \\ \\ \mu + \beta \, \int_{-\infty}^{\infty} v\left(\varphi \, y, \, \sigma^2\right) \phi_{\mu,\nu}(y) \, dy, & a = 1, \end{cases}$$

with  $\phi_{\mu,\nu}$  denoting the normal density with mean  $\mu$  and variance  $\nu$ .

#### Value iteration "works"

For  $V_0^{\lambda} \equiv 0$  the iteration

$$V_n^{\lambda} = TV_{n-1}^{\lambda}$$

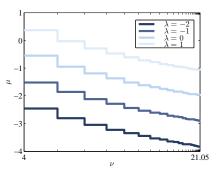
converges to a unique function  $V^\lambda:\Psi\to\mathbb{R}$  as  $n\to\infty$  that satisfies the Bellman equation,

$$V^{\lambda} = TV^{\lambda}.$$

This  $V^{\lambda}$  is the discount-optimal value function for the one-arm bandit problem with subsidy  $\lambda$ . An optimal policy for this problem maps  $(\mu,\nu)$  to action a if  $V^{\lambda}(\mu,\nu)=T_aV^{\lambda}(\mu,\nu)$ .

# Threshold Policy

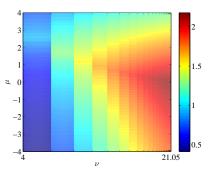
The optimal policy for the one-armed bandit problem with subsidy is a *threshold policy*.



Switching curves: above the curve the optimal action is "play", below "do not play".  $\beta=0.8,\,\varphi=0.9,\,\sigma=2.$ 

# Monotonicity of the Whittle Index

The Whittle index  $\gamma^W(\mu,\nu)$  is monotone non-decreasing in  $\mu$  and  $\nu$ , and generally not constant.



Difference of Whittle and myopic index:  $\gamma^W(\mu, \nu) - \mu$ .  $\beta = 0.8, \ \varphi = 0.9, \ \sigma = 2$ .

The Whittle index is a likely candidate for an asymptotically optimal policy, but no closed-form expression is known.

- Bandit Problems
- 2 Model Formulation
- 3 Index Policies
- 4 Whittle Index: Structural Results
- 5 Parametric Index: Many-Arms Asymptotic Behaviour

## Parametric Index

$$\gamma(\mu,\nu) = \mu + \theta\nu,$$

where  $\theta > 0$ .

The correction term  $\theta \nu$  allows to adjust the priority the decision maker wants to give to exploration.

## Asymptotic Behaviour: Intuition

• Consider the system under stationarity. Let  $d \to \infty$  while  $k_d/d \to \rho$ .

#### Asymptotic Behaviour: Intuition

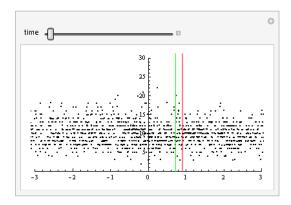
- Consider the system under stationarity. Let  $d \to \infty$  while  $k_d/d \to \rho$ .
- Note that the stochastic processes of indices are generally dependent.

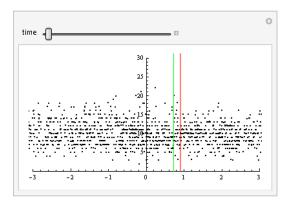
#### Asymptotic Behaviour: Intuition

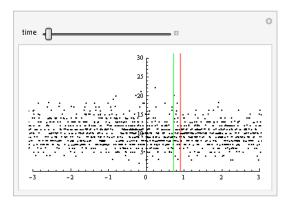
- Consider the system under stationarity. Let  $d \to \infty$  while  $k_d/d \to \rho$ .
- Note that the stochastic processes of indices are generally dependent.
- As we add more arms to the system, it approaches an equilibrium state in which the proportion of arms associated with a certain belief state remains fixed.

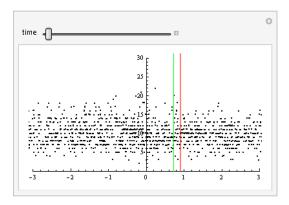
#### Asymptotic Behaviour: Intuition

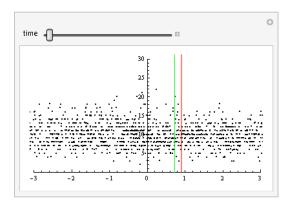
- Consider the system under stationarity. Let  $d \to \infty$  while  $k_d/d \to \rho$ .
- Note that the stochastic processes of indices are generally dependent.
- As we add more arms to the system, it approaches an equilibrium state in which the proportion of arms associated with a certain belief state remains fixed.
- Thus, in the limit, the action chosen for a certain arm is independent of the current belief state of any other arm.

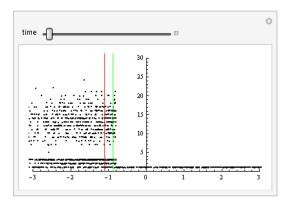


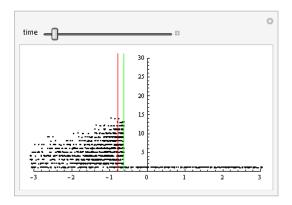


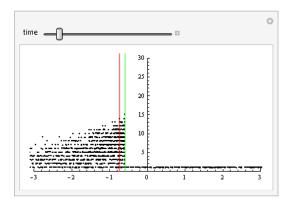


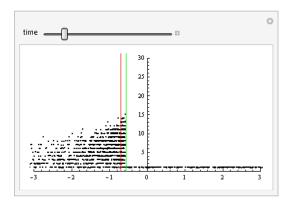


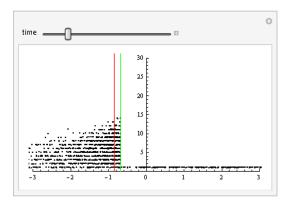


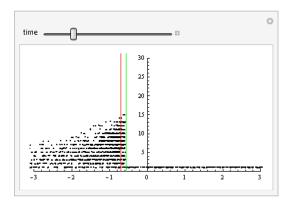


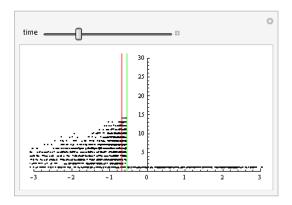


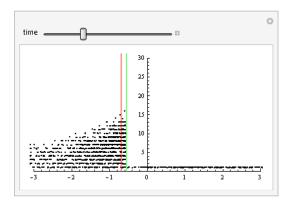


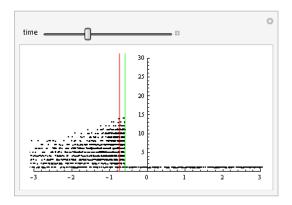


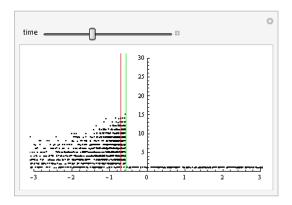












## Proportion of arms with a certain belief state

#### Proportion of arms with a certain belief state

The empirical measure

$$M^{d}(C,t) := \frac{1}{d} \sum_{i=1}^{d} \mathbf{1} \{ (\mu_{i}(t), \nu_{i}(t)) \in C \}$$

quantifies the proportion of arms in the d-dimensional system whose belief state falls into  $C \in \mathcal{B}(\Psi)$  at time t.

#### Proportion of arms with a certain belief state

The empirical measure

$$M^{d}(C,t) := \frac{1}{d} \sum_{i=1}^{d} \mathbf{1} \{ (\mu_{i}(t), \nu_{i}(t)) \in C \}$$

quantifies the proportion of arms in the d-dimensional system whose belief state falls into  $C\in\mathcal{B}(\Psi)$  at time t.

It can be written as

$$\sum_{h=0}^{\infty} M_h^d(B,t) := \sum_{h=0}^{\infty} \frac{1}{d} \sum_{i: \nu_i(t) = \nu^{(h)}} \mathbf{1} \{ \mu_i(t) \in B \},$$

where  $B \in \mathcal{B}(\Psi_1)$ , and  $\nu^{(h)}$  is the h-th element in  $\Psi_2$ , the state space of  $\nu$ .

#### Many-Arms Asymptotic Behaviour

#### Many-Arms Asymptotic Behaviour

$$m_h\big(x,\,t+1\big) = \begin{cases} m_{h-1}\Big(\min\big\{\frac{x}{\varphi},\,\ell_{h-1}^*(t)\big\},\,t\Big), & h \geq 1, \\ \sum_{h=0}^{\infty} \int_{\ell_h^*(t)}^{\infty} \Phi_{z,\,\nu^{(h)}}\left(\frac{x}{\varphi}\right) \, m_h(dz,t), & h = 0, \end{cases}$$

where  $\ell_h^*(t) := \ell^*(t) - \theta \nu^{(h)}(t)$  with  $\ell^*(t)$  defined by

$$\ell^*(t) = \sup \left\{ \ell \mid \sum_{h=0}^{\infty} m_h \left( \left\{ \mu \mid \mu + \theta \nu^{(h)} \in [\ell, \infty) \right\}, t \right) = \rho \right\}.$$

Thus,  $\ell_h^*(t)$  is a threshold such that at time t the parametric policy activates all arms that are of age h and have conditional mean  $\mu(t) \geq \ell_h^*(t)$ .

#### Many-Arms Behaviour

$$m_h(x, t+1) = \begin{cases} m_{h-1}\Big(\min\left\{\frac{x}{\varphi}, \ell_{h-1}^*(t)\right\}, t\Big), & h \ge 1, \\ \sum_{h=0}^{\infty} \int_{\ell_h^*(t)}^{\infty} \Phi_{z, \nu^{(h)}}\left(\frac{x}{\varphi}\right) m_h(dz, t), & h = 0, \end{cases}$$

#### Many-Arms Behaviour

$$m_h\big(x,\,t+1\big) = \begin{cases} m_{h-1}\Big(\min\big\{\frac{x}{\varphi},\,\ell_{h-1}^*(t)\big\},\,t\Big), & h \ge 1, \\ \sum_{h=0}^{\infty} \int_{\ell_h^*(t)}^{\infty} \Phi_{z,\,\nu^{(h)}}\left(\frac{x}{\varphi}\right) m_h(dz,t), & h = 0, \end{cases}$$

Motivated by evolution of belief states:

$$\left(\mu_i(t+1),\,\nu_i(t+1)\right) = \begin{cases} \left(\varphi\,\mu_i(t),\,\varphi^2\,\nu_i(t) + \sigma^2\right), & a_i(t) = 0,\\ \left(\varphi\,Y_{\mu_i(t),\,\nu_i(t)}\,,\,\sigma^2\right), & a_i(t) = 1. \end{cases}$$

#### Conjecture: Many-Arms Behaviour

Assume that  $M_h^d(B,0)$  converges weakly to  $m_h(B,0)$  for all  $h\geq 0$ ,

$$M_h^d(B,0) \xrightarrow{w} m_h(B,0),$$

as  $d \to \infty$  while  $\lim_{d \to \infty} k_d/d = \rho$ . Then, for all  $t, h \ge 0$ ,

$$M_h^d(B,t) \xrightarrow{w} m_h(B,t).$$

#### Conjecture: Equilibrium State

#### Conjecture: Equilibrium State

The measure-valued dynamical system at equilibrium is directly related to a one-armed process where the arm is activated whenever the index exceeds a particular threshold  $\bar{\ell}$ , namely  $\bar{\ell}=\ell^*$  from before.

#### Conjecture: Equilibrium State

Assume that the index is parametric, and that  $\Gamma^\ell(t)$  is stationary. Then the equation

$$\mathbb{P}\left(\Gamma^{\ell}(t) \ge \ell\right) = \rho$$

has a unique solution  $\ell^*$ , which satisfies

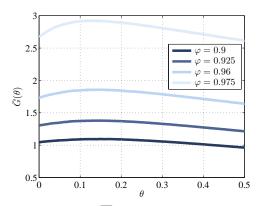
$$\ell^* = \sup \left\{ \ell \, \Big| \, \sum_{h=0}^{\infty} \widetilde{m}_h^* \Big( [\ell, \infty) \Big) = \rho \right\},$$

and

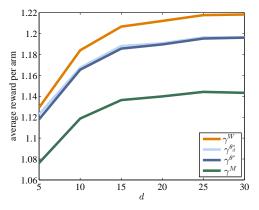
$$\mathbb{P}\left(\Gamma^{\ell^*}(t) \in B\right) = \sum_{h=0}^{\infty} \widetilde{m}_h^*(B), \, \forall \, B \in \mathcal{B}(\mathbb{R}).$$

#### Algorithm for Performance Evaluation

- For large T determine  $\overline{\ell}$  such that  $T^{-1}\sum_{t=0}^{T}a_i(t)=\rho$  is achieved for a parametric index policy applied to the one-armed process.
- ② Use the sample path of Step 1 to obtain an estimate  $\overline{G}$  for the expected average reward of the one-armed system.
- ① Output  $\overline{G}_d := d \ \overline{G}$  as an approximation of the expected average reward of the multiarmed system with d arms.



Expected average reward  $\overline{G}(\theta)$  computed by the algorithm as a function of  $\theta$ .  $\sigma=2$ ,  $\varphi\in\{0.9,0.925,0.95,0.975\}$ ,  $\rho=0.4$ ,  $T=2\times 10^6$ .



Comparison of average rewards achieved per arm.  $\theta$  is found by optimizing (i) the problem with d arms ( $\theta_d^*$ ), and (ii) the one-armed problem ( $\theta^*$ ).  $\varphi = 0.9$ ,  $\sigma = 2$ ,  $\rho = 0.4$ ,  $T = 10^5$ .

#### References

- K. AVRACHENKOV, L. COTTATELLUCCI, and L. MAGGI (2012). Slow Fading Channel Selection: A Restless Multi-armed Bandit Formulation. *ISWCS*, pp. 1083–1087.
- 2. J. GITTINS, K. GLAZEBROOK and R. WEBER (2011). *Multi-armed Bandit Allocation Indices*, 2nd Ed., John Wiley & Sons.
- 3. J. K., M. MANDJES and Y. NAZARATHY (2014). Exploration vs. Exploitation with Partially Observable Gaussian Autoregressive Arms. *Submitted*.
- K. LIU and Q. ZHAO (2010). Indexability of Restless Bandit Problems and Optimality of Whittle Index for Dynamic Multichannel Access. *IEEE Trans. o. Inf. Theory*, 56, pp. 5547–5567.
- 5. I. M. VERLOOP (2014). Asymptotic Optimal Control of Multi-Class Restless Bandits. *Submitted*.
- P. WHITTLE (1988). Restless bandits: Activity Allocation in a Changing World. *Journal of Applied Probability*, 25, pp. 287–298.

#### Thank you!

