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What is a bandit problem?
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Multiarmed Bandit Problem
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Multiarmed Bandit Problem

Pick k out of d arms at every decision time. States are resting
unless the arm is played. These are the classical bandit problems.
An optimal policy is the Gittins index.
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Decision Problem
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Decision Problem

Xo(t)

|

Reward Xs(t)



Bandit Problems

Restless Bandit Problems

P. WHITTLE (1988):
Restless bandits: Activity Allocation in a Changing World.
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Partially Observable



Bandit Problems

Partially Observable

Exploration vs. Exploitation:

Should we collect new information
or opt for the immediate payoff?



Bandit Problems

Partially Observable Restless Bandit Problems

K. Liu and Q. ZHAO (2010):
Indexability of Restless Bandit Problems and Optimality of Whittle
Index for Dynamic Multichannel Access.
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© Model Formulation



Model

States vs. Belief States

State processes are assumed to be Gaussian autoregressions of
order 1 (AR(1)),

Xi(t) = pXi(t — 1) + &),

where ¢ € (0,1), and &;(t) ~i.i.d. N(0,0?).



Model

States vs. Belief States

State processes are assumed to be Gaussian autoregressions of
order 1 (AR(1)),

Xz(t) = gOXi(t — 1) + €i(t),
where ¢ € (0,1), and &;(t) ~i.i.d. N(0,0?).

Belief state of arm ¢ at time ¢:

i (t) —E[ )| Xi(t —nalt ))77773(75)} = DX, (t — mi(t)),

_ p2m()
vi(t) := Var (Xi(t) | Xi (t — i) 777i(t)> = 021110@27

where 7;(t) := min{h > 1|a;(t — h) = 1}.
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Why is the Gaussian model special?



Model

Why is the Gaussian model special?

@ The belief states (y;(¢), v;(t)) contain all relevant
information available at time ¢.



Model

Why is the Gaussian model special?

@ The belief states (y;(¢), v;(t)) contain all relevant
information available at time ¢.

@ At the same time, p;(t) and v;(t) quantify the expected gain
from exploiting an arm vs. the need for exploring it.



Model

Belief State Evolution

(@ ui(t), P*vi(t) +02), ai(t) =0,

(it +1), vi(t +1)) = {
(@Y, 7°), a;(t) = 1.



Model

Belief State Evolution

(@ ui(t), P*vi(t) +02), ai(t) =0,

(Mi(t+ 1), vi(t + 1)) = {
(QDY (), vi(t) > 02), a;(t) = 1.

= Markov Decision Process



Model

Chain of Actions

(p,,l/) >

observe state,
collect reward

update belief



Index Policies

Objective

Find a policy 7 so as to maximize the total expected discounted
reward criterion,

VTi(p,v) = hm EZV

ZﬁtZXz(w ai(t)] ) /8 € (0?1)7



Index Policies

Objective

Find a policy 7 so as to maximize the total expected discounted
reward criterion,

T d

ZﬁtZXz(t) ai(t)] ) /8 € (0?1)7

t=0 =1

V(,v) = lim B,

or the average expected reward criterion,
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Index Policies

Objective

Find a policy 7 so as to maximize the total expected discounted
reward criterion,

T d

ZﬁtZXz(t) ai(t)] ) /8 € (0?1)7

t=0 =1

V(,v) = lim B,

or the average expected reward criterion,

T—1

d
> x|
t=0 =1

Note that we can replace X;(t) by u;(t)!

G™(p,v) := hTIIigOIéf TEZ
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How to find a good policy?



Index Policies

How to find a good policy?

Dynamic programming is typically intractable in practice.



Index Policies

Index Policies

An index policy is of the form

d
Ty (p,v) = argmax {Z v (ki i) az}

azzgzl a;i=k \j=1

The index function v maps the belief state of each arm to some
priority index.



Index Policies

Examples for Index Functions

Myopic M, v) = p
Parametric | 7%(u,v) =p+0v, 6>0
Whittle YW(p,v) =inf{\| Wépt(/t, v) =0}




Structural Results

@ Whittle Index: Structural Results



Structural Results

Definition

P (1) = inf { X e v) = 0

Here Wé‘pt is the optimal policy for a
one-armed bandit problem with subsidy,

where the decision maker observes and collects the reward when
playing, and obtains a subsidy A otherwise.



Structural Results

Dynamic Programming Operator

Let T'v := max,e(o,1} Tav, where

A Bu(pp, p*v+0?), a=0,
Tov (p,v) ==

A+ B [T v ey, 0%) duu(y)dy, a=1,

with ¢, ,, denoting the normal density with mean y and variance v.



Structural Results

Value iteration “works”

For VO)‘ = 0 the iteration
VA=TV} |

converges to a unique function V* : ¥ — R as n — oo that
satisfies the Bellman equation,

VA =TV,

This V* is the discount-optimal value function for the one-arm
bandit problem with subsidy A. An optimal policy for this problem
maps (p1, V) to action a if VA (u,v) = T,V (u,v).



Structural Results

Threshold Policy

The optimal policy for the one-armed bandit problem with subsidy
is a threshold policy.

=
e d
[N

o

—o

4 21.05
v

Switching curves: above the curve the optimal action is “play”,
below “do not play”. 8 =0.8, ¢ =0.9, 0 = 2.
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Monotonicity of the Whittle Index

The Whittle index 4"V (1, v) is monotone non-decreasing in y and
v, and generally not constant.

4
3 2
2
1 15
2 0
-1
1
2|
-3
. = 0.5
4 21.05

Difference of Whittle and myopic index: vV (u,v) — p.
B=08,¢=09 =2



Structural Results

The Whittle index is a likely candidate for an asymptotically
optimal policy, but no closed-form expression is known.



Many-Arms Asymptotics

© Parametric Index: Many-Arms Asymptotic Behaviour



Many-Arms Asymptotics

Parametric Index

Y(psv) = p+ O,
where 6 > 0.

The correction term v allows to adjust the priority the decision
maker wants to give to exploration.
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Asymptotic Behaviour: Intuition

o Consider the system under stationarity. Let d — oo while
k‘d/d — p.
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@ As we add more arms to the system, it approaches an
equilibrium state in which the proportion of arms associated
with a certain belief state remains fixed.
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Asymptotic Behaviour: Intuition

o Consider the system under stationarity. Let d — oo while
k‘d/d — p.

@ Note that the stochastic processes of indices are generally
dependent.

@ As we add more arms to the system, it approaches an
equilibrium state in which the proportion of arms associated
with a certain belief state remains fixed.

@ Thus, in the limit, the action chosen for a certain arm is
independent of the current belief state of any other arm.
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Example: Myopic (i.e. § =0)

time =[j
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Example: Myopic (i.e. § =0)
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Proportion of arms with a certain belief state



Many-Arms Asymptotics

Proportion of arms with a certain belief state
The empirical measure

= 531, me) <)

quantifies the proportion of arms in the d-dimensional system
whose belief state falls into C' € B(¥) at time t.



Many-Arms Asymptotics

Proportion of arms with a certain belief state

The empirical measure

= 531, me) <)

quantifies the proportion of arms in the d-dimensional system
whose belief state falls into C' € B(¥) at time t.
It can be written as

ZMh (B.1) Z > t{u) e B,

21/() v(h)

where B € B(V;), and v(M) is the h-th element in Uy, the state
space of v.
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Many-Arms Asymptotic Behaviour



Many-Arms Asymptotics

Many-Arms Asymptotic Behaviour

mi-1 (min £, 65_,()}, ¢), h> 1,
mp, (x, t+ 1) =
S0 S ®am (2) maldzt), h=0,

where €% (t) := £*(t) — Ov M) (t) with £*(t) defined by

0*(t) = sup {E‘ imh({ﬂ‘ﬂ-&-eu(h) €[(,00)}, t) = p}.

h=0

Thus, £} (t) is a threshold such that at time ¢ the parametric policy
activates all arms that are of age h and have conditional mean

p(t) = G,(1).
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Many-Arms Behaviour

mh—1<min{%7 ngl(t)}a t)a h > 1a

mp, (x, t+ 1) =
S0t S ®avm (2) maldz), h=0,
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Many-Arms Behaviour

mh—1<min{%7 Kzfl(t)}a t)a h > 1,

mp, (x, t+ 1) =
ZZ‘;O f;}‘lo(t) q)z,y(h) (%) mh(dz7t)7 h =0,

Motivated by evolution of belief states:

, 2, 02). ai(t) =0,
(it +1), vit +1)) = (P (), * vilt) + %), ailt)
(Ym0 @) =1,
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Conjecture: Many-Arms Behaviour

Assume that M{(B,0) converges weakly to my(B,0) for all h > 0,
M;Z(B,O) = mh(B,O),
as d — oo while limg_, o, kg/d = p. Then, for all t,h > 0,

MZ(B,t) = my(B,t).
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Conjecture: Equilibrium State
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Conjecture: Equilibrium State

The measure-valued dynamical system at equilibrium is directly
related to a one-armed process where the arm is activated
whenever the index exceeds a particular threshold ¢, namely ¢ = ¢*
from before.
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Conjecture: Equilibrium State

Assume that the index is parametric, and that I'*(t) is stationary.
Then the equation

P (P‘(t) > E) —p
has a unique solution £*, which satisfies

£ = sup {E‘ iﬁf};([&oo)) :p},

and

IP’( ) Z ), VB € B(R).
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Algorithm for Performance Evaluation

@ For large T determine £ such that 7! Z;—F:o a;i(t) =pis
achieved for a parametric index policy applied to the
one-armed process.

@ Use the sample path of Step 1 to obtain an estimate G for the
expected average reward of the one-armed system.

@ Output Gy := d G as an approximation of the expected
average reward of the multiarmed system with d arms.
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3
25t —_— = 0.9
— = 0.925
©=0.96
2r ©=0.975 [
S
I}
15}
pummmm——
1,
05 i i i i
0 0.1 0.2 03 0.4 05

0
Expected average reward G(6) computed by the algorithm as a

function of 6. 0 =2, ¢ € {0.9,0.925,0.95,0.975}, p = 0.4,
T =2x 106.



Bandit Problems Model Index Policies Structural Results Many-Arms Asymptotics

=
=
[es)

-
[N
()]

P
=
N

average reward per arm
P
IS

5 10 15 ] 20 2 0
Comparison of average rewards achieved per arm. 0 is found by
optimizing (i) the problem with d arms (67), and (ii) the
one-armed problem (6%). ¢ =0.9, 0 =2, p=0.4, T = 10°.
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Thank you!




