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A simple state space model
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Application to traffic modelling

Controller

Image Processing Sensor

Source: Sumitomo Electric
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State space model with shift

Xig1 = AXe + Vi + M1k

; Vi = BXt+Zt+N1{t2k}
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We need to decide whether a change has occurred or not:

Hy : No change has occurred.

Hq : There is a change point k with 1 < k < m.



We need to decide whether a change has occurred or not:

Hy : No change has occurred.

Hq : There is a change point k with 1 < k < m.

Note that Hy = |J, H1(k).



How do we do that?
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CUSUM method

Test statistic:

LRk m = S 4 £(V2)



CUSUM method

Test statistic:

Stopping rule:

LLRkm = Sk U( Vi)

T = inf{m : max, LLRx ,, > b}



CUSUM method

Test statistic:
Stopping rule:

Performance criterion:

LLRkm = Y-t £( Vi)
T = inf{m : max, LLRx ,, > b}

Eor > Kk



CUSUM method

Test statistic:
Stopping rule:
Performance criterion:

Threshold:

LLRym = S (V2)

7 = inf{m : maxx LLRx ,, > b}
EoT > K

Asymptotics (for i.i.d.),

recursive integral equations,
numerical methods



Window-limited testing procedure

"now"



Window-limited testing procedure

|
"now"

T =inf{m: maxg<k<my LLRx m > b}




Window-limited testing procedure

|
"now"

T = inf {m s MaX(m-n<k<my LLRkm > b}




Our (stronger) performance criterion

Choose the threshold b in such a way that the proba-
bility of raising an alarm for the current window is kept
at a given low level:

Po ( max LLRk‘n > b) =
ke{1,...,
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Abstract
A popular method for detecting changes in the probability dm.nbmmu of 2 sequence
of obsarvations & CUSUM, which proceeds by ly d ratio
test statistic and ing it to a a change pomt is detected as soon

as the threshold is excended. Tt & desirable 1o dmcraz the threshold in such a way that
the number of false detections is kept to a specified level while on the other hand ensuring
a quick detection if a change has occurred. In this paper we analyse the distribution of
the CUSUM stopping time when observations may be correlated, with the aim of devising
simple yet effective methods for selecting the threshold. In addition to the standard CUSUM
procedure we consider window-limited testing where only the n mast recent chservations
are considered at each time point. Traditionally, the number of false alarms is measured
by the average run length — the expected time until the first false alarm. However, this i
a reasonable eritarion only when the expectation is finite. We thus propose an alternative
criterion that ensures a large average run length and is more generally applicable. We prove
that CUSUM & asymptotically optimal under this eriterion, and investigate methods for
salacting the threshold such that it is approximately achieved. Apart from the above, we note
that the average run length criterion does not allow one to restrict the variability of false
alarms, which we argue can be crucial. Therefore, we make a case for a stronger false alarm
eriterion, and show how it is related to the average run length. To illustrate the procedures
and evaluate their performance, we provide numerical examples featuring a multidimensional
state space model
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Our (stronger) performance criterion

Choose the threshold b in such a way that the proba-
bility of raising an alarm for the current window is kept
at a given low level:

Po ( max LLRk‘n > b) =
ke{1,...,
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Gaussian approximation

Recall that LLRs are partial sums: LLRx , Y7, £(V4).

= Can apply Donsker’s theorem
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Gaussian approximation

Recall that LLRs are partial sums: LLRx , Y7, £(V4).

= Can apply Donsker’s theorem

Po <max LLRg 5 > b)

1<k<

= Po(n}gx (rBt+ut>b)

:1—d><b ;n) ¢<_b\_fﬂn>
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Back to the model

Xit1 = AXt + Y + Ml{tzk} , V\i=BXi+Z+N 1{t2k}
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Back to the model

X1 =AXt + Vi + MLlgsgy, Vi=BXi+Zi+ Nl

From Kalman filtering:
Eff o= Vt — Bj\(t 5

where )A(t = E[X;| V4,..., V;_1] is the minimum variance
estimator for the hidden state X;.
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Back to the model

Xt+1 =AX;+ Y; + Ml{tzk} , Vi=BXi+Z4 + N 1{t2k}

From Kalman filtering:
Eff o= Vt — Bj\(t 5

where )A(t = E[X;| V4,..., V;_1] is the minimum variance
estimator for the hidden state X;.

The innovations ¢; are independent.
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Testing the innovations

The persistent change in mean in X; and V; results in a dynamic
change in the innovations; namely, the shift in mean on ¢; is

p(t k) =B [y(t, k) — AC(t —1,k)] + N,

where (t,k) = Ayp(t — 1,k) + M, ((t, k) = AL(t — 1,k) +
K: p(t, k), with initial conditions ¢(k, k) =0, ((k —1,k) = 0.
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Testing the innovations

Thus, we are interested in testing whether there is a change point
atsome k € {1,...,n}, witht > k:

HoZ Et NN(O, Qt)

Hy: Uy [Hi(K) = et ~ N (o(t, k), Qt)}
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Testing the innovations

Thus, we are interested in testing whether there is a change point
atsome k € {1,...,n}, witht > k:

HoZ Et NN(O, Qt)
+
Q
H1: UZ:1 H1(k) L Et NN(p(t,k), %
P

)]
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Testing the innovations

For large n — k we have

’
LLRanZpQ £t —EpQ p.
t=k

The mean and variance of the asymptotic likelihood increments
(under Hp) are

1, _
p=—50"p, o®=pQ7p.
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Gaussian approximation

P
0 <1r£kagxn LLRk’n > b)

~ Py (max oBs+ut> b)
te[0,n]

b—pun 2bp
:1—(D 2
() =% o




Should b really be constant?

—100f .,

20 40 60 80 100
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Large deviation approximation

Gartner-Ellis theorem:

.1 1
lim_ - log Po <nLLRk,,, > b(k)> =Z(b(k)),

where

Z(b(k)) = sup (Ab(k) — (1 — Bk) A(\))

AeR
is the Fenchel-Legendre transform of the limiting log-moment
generating function of the LLR:

’
A(\) := lim —logEg (e’\LLRKv") :

n—oo N
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Large deviation approximation

Gartner-Ellis theorem:

n—oo N

lim 1 log Py (ﬁ %LLRk,n > b(k)> =Z(b(k)),

where

Z(b(k)) := sup (Ab(k) — (1 — Bk) A(N))

A€ER

is the Fenchel-Legendre transform of the limiting log-moment
generating function of the LLR:

.1
AQ\) = lim —logEo (eA '-'-Rk»") :
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Large deviation approximation

Gartner-Ellis theorem:

im_~iogPo (LR, > b(K) ) = Z(b(K)).

n—oo

suggests to pick the threshold function b such that it satisfies

o = exp (—nZ(b(K)))

where we can compute

7(b(k9) = sup { (k) + (1 = B)5(1 = N/ ~'p}
A
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Numerics

Alarm ratio
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Alarm ratios, obtained with the LD threshold
for A=B =05k, M=N=(2,2), a =0.01.
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False alarm rate

05 a 0
Xit1 = ( a 05 )Xt+ Yi+ < 0 ) Lit>ky

2
Vi =BX; + Z + < 2 ) 1{;2;(}
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False alarm rate

False alarm rate
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False alarm rate

False alarm rate
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False alarm rate

a=0.01, M= (0,0, N = (2,2) a=0.01,M=(2,2), N = (0,0)
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Conclusions

* We can test the independent sequence of innovations.
 Using approximate LLRs works well.

« LD threshold function is better than CLT threshold.
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Conclusions

* We can test the independent sequence of innovations.
 Using approximate LLRs works well.

+ LD threshold function is better than CLT threshold.

» Generally, we should choose a threshold function.

* Not from this paper: We should replace Eq7 > « by false
alarm probability criterion.
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Thank you!
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Example: ARMA model

AR: Xt = (pXt_1 + &t
MA: Xt = ’1981_1 + &¢

— AR: constant threshold )
- - - MA: constant threshold !
—— AR: LD threshold k
- - - MA: LD threshold B

Delay

10 |~

0.2

Coefficient
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Large deviation approximation

Gartner-Ellis theorem:

T(b(K)) = sup (Ab(k) — (1 — B AY)

is the Fenchel-Legendre transform of the limiting log-moment
generating function of the LLR:

1
AQ\) = lim_—log Eg (eA '-'-RM) .
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