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Why is that interesting?
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Outline

Change Detection Procedures

Unconditional Local False Alarm Probability

Maximum Local False Alarm Probability

Window Limited False Alarm Probability
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We need to decide whether a change has occurred or not:

H0 : No change has occurred.

H1 : There is a change point k with 1 ≤ k ≤ m.
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How do we do that?

stopping rule

test statistic

threshold
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Traditional approach

Test statistic: LLRk ,m =
∑m

t=k `(Xt ) (CUSUM)

Stopping rule: τ = inf{m : maxk LLRk ,m > b}

Performance criterion: Average run length: E0τ

Threshold: Asymptotics (for i.i.d.),
recursive integral equations,
numerical methods
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Optimality

Minimises detection delay among all procedures that satisfy

• E0τ = κ (strict optimality)

• E0τ ≥ κ as κ→∞ (asymptotic optimality)
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know

70%

do not know

30%
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Procedure

"now"
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Procedure

"now"

τ = inf
{

m : max{1≤k≤m} LLRk ,m > b
}
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Procedure

"now"

τWL = inf
{

m : max{m−n≤k≤m} LLRk ,m > b
}
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Alternative performance criteria

WL FA probability: P0(τWL ≤ N)

Max. local FA probability: supm≥0 P0(τ ≤ m + n | τ ≥ m)

Unconditional local FA prob.: supm≥0 P0(m ≤ τ ≤ m + n)
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Asymptotics

ULFAn := sup
m≥0

P0(m ≤ τ ≤ m + n)

• CUSUM is asymptotically optimal for small α among
procedures that satisfy ULFAn ≤ α (Lai, 1998).

• But: For large thresholds (small α) this is decreasing in m
(Tartakovsky, 2005).

14 /30



Asymptotics

ULFAn := sup
m≥0

P0(m ≤ τ ≤ m + n)

• CUSUM is asymptotically optimal for small α among
procedures that satisfy ULFAn ≤ α (Lai, 1998).

• But: For large thresholds (small α) this is decreasing in m
(Tartakovsky, 2005).

14 /30



Alternative performance criteria

WL FA probability: P0(τWL ≤ N)

Local FA probability: supm≥0 P0(τ ≤ m + n | τ ≥ m)

Unconditional local FA prob.: supm≥0 P0(m ≤ τ ≤ m + n)
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Maximum local FA

MLFAn := sup
m≥0

P0 (τ ≤ m + n | τ > m)

= sup
m≥0

P0(m < τ ≤ m + n)

P0(τ > m)

Again, CUSUM turns out to be optimal for large b among all
procedures that satisfy MLFAn ≤ α (Tartakovsky, 2005).

Numerically it seems that the value for m that maximizes
P0 (τ ≤ m + n | τ > m) is.... zero!
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Asymptotic optimality?

If P0(τWL ≤ N
)
≤ α, then:

(i) The ARL condition E0τ ≥ κ is satisfied for
κ = (n + 1)(1− α).

(ii) The ARL condition E0τWL ≥ κWL is satisfied for
κWL = max{N(1− α), κ}.
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How we may want to think about it

Define

Sk :n(m) :=
n+m∑

i=k+m

`(Xi ) .

Then

P0 (τWL ≤ N) = P0
(
MN > b

)
,

where

MN :=

 max
{

S1:n(0), . . . ,S1:n(N)
}

...
max

{
Sn:n(0), . . . ,Sn:n(N)

}
 .
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Get a grip on Mn

For many popular CP test statistics we can write

Y m = CY m−1 + ϑ1`(Xm+n) ,

where Y m :=
(
S1:n(m), . . . ,Sn:n(m)

)′.

Example: CUSUM
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Y m = CY m−1 + ϑ1`(Xm+n) ,

where Y m :=
(
S1:n(m), . . . ,Sn:n(m)

)′.
Example: CUSUM

Sk :n(m) = Sk :n(m − 1)− `(Xk+m−1) + `(Xn+m)

"now"
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Get a grip on Mn

For many popular CP test statistics we can write

Y m = CY m−1 + ϑ1`(Xm+n) ,

where Y m :=
(
S1:n(m), . . . ,Sn:n(m)

)′.
Example: CUSUM

Y m =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

Y m−1 + 1`(Xm+n)

Other examples:

Moving average, EWMA, non-parametric CUSUM
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Ugly integral equation
Let, for fixed x ∈ Rn,

Qm(x ) := P (Mm ≤ x )

for m ≥ 0.

Proposition
We have Qm(x ) = KQm−1(x ) for m ≥ 0, where

K h(x ) =

∫
R

F
(

1
ϑ

min
i=1,...,n

{(
x −Ψ(z)

)
i

})
dh(z) .

Numerical solution: Withers and Nadarajah (2014)
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Extreme value distribution

Theorem (Amram, 1985)
For standard stationary Gaussian random vectors Y m that
are “not too dependent”, and large m:

P(Mm,i ≤ am x i + cm, i = 1, . . . ,n) ≈
n∏

i=1

exp
(
− exp(−x i )) ,

(we know what am and cm are).

Set the threshold to be the constant

bN := −aN log
(
−1

n
log(1− α)

)
+ cN ,

for fixed N and n.
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Example

101 102 103
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Dashed lines: α ∈ {0.05, 0.1, 0.2}
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Gaussian approximation

P0

(
max

1≤k≤n
LLRk ,n > b

)
≈P0

(
max

t∈[0,n]
σBt + µ t ≥ b

)
= 1− Φ

(
b − µn
σ
√

n

)
+ e

2bµ
σ2 Φ

(
−b − µn
σ
√

n

)

24 /30



Example: State space model

Xt+1 = AXt + Yt + M 1{t≥k}

Vt = BXt + Zt + N 1{t≥k}
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Large deviation approximation

The Gärtner Ellis theorem suggests to pick the threshold
function b such that it satisfies

α = exp
(
−nI

(
b(β)

))
for all 0 ≤ β ≤ 1 such that nβ + 1 integer, where we can
compute

I
(
b(β)

)
= sup

λ

{
λb(β) + (1− β)

λ

2
(1− λ)ρ′Ω−1ρ

}
.

=> Simple closed form expression for b(β).
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Example: State space model

Xt+1 =

(
0.5 a
a 0.5

)
Xt + Yt +

(
0
0

)
1{t≥k}

Vt = BXt + Zt +

(
2
2

)
1{t≥k}
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Example: ARMA model

AR: Xt = ϕXt−1 + εt

MA: Xt = ϑ εt−1 + εt
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AR: simulated threshold
MA: simulated threshold
AR: LD threshold
MA: LD threshold
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know
5%

do not know
95%
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