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Abstract. This paper considers a multi-server queue with Markov-modulated Poisson

input and server-dependent phase-type service times. We develop an efficient rare-event

simulation technique to estimate the probability that the number of customers in this system

reaches a high value. Relying on explicit bounds on the probability under consideration as

well as the associated likelihood ratio, we succeed in proving that the proposed estimator

is of bounded relative error. Simulation experiments illustrate the significant speed-up that

can be achieved by the proposed algorithm.
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1. Introduction

The multi-server queue is a well-studied object in operations research with widespread

applications, for example in the modelling of call centres [?] and healthcare systems [?]. In

many situations, the system needs to be designed in such a way that the service level offered

is sufficiently high. This is usually translated into the requirement that the probability of

the backlog exceeding some critical value should be below a given threshold value.

For the case of homogeneous servers (meaning that the service times at the various servers

have a common distribution), a strand of research focuses on evaluating the probability that

the number of customers waiting exceeds some high levelK. A key result in this area concerns

the situation in which the service-time distribution has a finite moment generating function

around the zero (implying that all moments exist): it was proven by Sadowsky [?] that for

such GI/GI/m queues the tail of the probability of interest decays effectively exponentially,

cf. also the earlier paper by Takahashi [?] for the setting with phase-type interarrival times

and phase-type service times. In addition, [?] provides a fast (importance-sampling based)

simulation procedure to estimate this probability with provable optimality properties. More

specifically, it was shown that the estimator is logarithmically efficient; this entails that the

number of runs needed to obtain an estimate with a given precision grows sub-exponentially

in the level K.

In the above literature it was assumed that the servers are homogeneous; this implies,

for example, that each service entity serves customers at the same average speed. In many

practical situations, however, this assumption is overly restrictive as has been recognized

in the work of e.g. [?, ?] (as well as in other references which deal with the problem of
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routing in systems with heterogeneous servers). Not much is known, however, about the tail

distribution of such heterogeneous multi-server systems.

Another aspect that is hardly covered in the importance-sampling literature concerns the

incorporation of overdispersion. Traditionally the arrival process is modelled as a Poisson

process (or more generally a renewal process), implying that the mean and variance of

the number of arrivals in an interval of given length coincide. Empirical studies, however,

indicate that the Poisson process is not always appropriate to model the arrival stream’s

intrinsic variability. Arrival data turns out to be often ‘overdispersed’, meaning that that

the variance of the number of arrivals in an interval of given length is significantly larger

than the corresponding mean value; see e.g. [?, ?, ?, ?]. This phenomenon is better captured

by a Cox process, which is a Poisson process but now with a randomly evolving (rather than

fixed) parameter. The traditional example of such an overdispersed arrival process is the

Markov-modulated Poisson (MMP) process. For an MMP process the arrival rate is λi when

an independently evolving continuous-time, finite-state Markov chain (typically referred to

as the background process) is in state i. For results on queues with Markov-modulated input

we refer to e.g. [?, Ch. XI].

Motivated by the above considerations, the object of study in this paper is the multi-

server queue with MMP input and server-dependent phase-type service times. The main

contribution is that we devise efficient simulation techniques for the purpose of estimating

the tail distribution of the stationary number of customers in the system. In more detail,

our work extends the existing literature on importance sampling for multi-server queues are

as follows.

◦ In our set-up we allow the servers to be heterogeneous, whereas [?, ?] assume server-

homogeneity. We remark that [?] considers light-tailed service-time distributions,

whereas we focus on the subclass of phase-type distributions. Recall, however, that

general non-negative distributions can be approximated arbitrarily closely by phase-

type distributions so that in practical terms hardly any generality is lost; see e.g.

[?, ?] and [?, Thm. III.4.2]. (The focus is still on light-tailed distributions as for

heavy-tailed distributions the number of phases needed to adequately model the tails

may be excessively large.)

◦ In addition, we allow for the arrival process to be overdispersed. We focus on the

case of MMP arrivals, but, as we will point out, other types of arrival processes can

be treated with similar techniques (such as the renewal processes that were studied

in [?]).

◦ We show that our proposed importance-sampling estimator is strongly efficient, (or,

equivalently, has bounded relative error). This means that the number of runs needed

to obtain an estimate with given precision remains bounded (i.e., is smaller than some

constant that does not depend on K). Recall that in [?] just logarithmic efficiency

was proven (implying that the number of runs needed grows sub-exponentially).

In summary, our model can be viewed as a generalization of that of [?] in that we allow for

heterogeneous servers as well as overdispersed arrival processes; the (minor) sacrifice that we

make is that we assume the service times to be of phase-type, rather than just light-tailed.

In more detail, the results obtained are the following.
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(i) In the first place, for the queue under study we propose efficient simulation algorithms

for the estimation of the probability that the backlog (that is, the number of customers

or jobs waiting in the queue) during a busy cycle (during which the system is non-

empty) exceeds a given level K. The procedure can be modified for the estimation of

related quantities such as the fraction of customers or jobs entering the system while

the backlog is larger than K, or the fraction of customers lost in the corresponding

model with a waiting room of finite size K.

The algorithms are based on importance sampling, that is, the model is simulated

under an alternative measure, under which the event under consideration is not rare.

We identify an efficient change of measure by solving a particular eigensystem. As

it turns out, this change of measure provides us with upper and lower bounds on the

probability of interest which are both exponential in the exceedance level K (and which

match up to a multiplicative constant). This property implies that our importance-

sampling estimator is strongly efficient.

(ii) As the eigensystem to be solved can become prohibitively large when the dimension

of the background process and/or the dimensions of the phase-type distributed service

times grow large, we show how the eigensystem can be decoupled in order to identify

the change of measure in a computationally more efficient way.

(iii) Finally, we point out how the change of measure can be found for various variants of

the arrival and service processes.

The organization of this paper is as follows. In Section ?? we introduce the model and

formulate our objectives in greater detail. In Section ?? we propose the change of measure

that is to be used in the importance-sampling based procedure. We then establish bounds

on the probability of interest, which we use to prove that the importance-sampling algorithm

has bounded relative error. In Section ?? we show that the same change of measure can

be obtained when considering the arrival and service processes separately, thus drastically

reducing the computational effort needed to compute the change of measure. Section ??

contains illustrative numerical experiments that give an impression of the typically achievable

speed-up. We conclude in Section ?? by discussing how the importance sampling algorithm

can be adapted to estimate related quantities.

2. Framework

2.1. Model. In this paper we primarily focus on the following MMP/Ph/m with heteroge-

neous servers. We now introduce the arrival process and service processes used.

Arrival process. Consider the following MMP arrival process. The transition rate matrix of

the (finite-state) background process (It)t≥0 is Q = (qij)
d
i,j=1; define qi := −qii =

∑
j 6=i qij.

When the background process (assumed to be irreducible) is in state i arrivals occur accord-

ing to a Poisson process with rate λi > 0. Let the mean arrival rate be λ := π′λ, with π

the invariant probability measure of the background process and λ := (λ1, . . . , λd)
′.

Service processes. There are m heterogeneous servers. Service times at server ` ∈ {1, . . . ,m}
are i.i.d. samples distributed as the non-negative random variable B(`). We let B(`) be of

phase-type [?, Ch. III] with initial distribution α(`) concentrated on the transient states,
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and transition rate matrix

T (`) =
(
t
(`)
ij

)D(`)+1

i,j=1
=

(
S(`) s(`)

0 0

)
, (1)

for some D(`) ∈ N. We impose the usual requirement that t
(`)
ij > 0 for i ∈ {1, . . . D(`)} and

j ∈ {1, . . . D(`) + 1} with i 6= j, and tD(`)+1,j = 0 for j ∈ {1, . . . , D(`) + 1}; in addition we

define

t
(`)
i := −t(`)ii =

D(`)+1∑
j=1,j 6=i

t
(`)
ij ,

so that the row sums are zero. In words, the above means that the service time at server

` stays in phase i for an exponentially distributed amount of time with mean (t
(`)
i )−1, and

then jumps to state j 6= i with probability t
(`)
ij /t

(`)
i .

Thus, the evolution of the system is recorded by the following trivariate process:

(i) The state of the background process (It)t>0 taking values in I := {1, . . . , d}.
(ii) The state vector (J t)t>0 of the phase-type distributions of the customers in service;

with † indicating that the corresponding server is idle, this takes values in

D := {1, . . . , D(1), †} × · · · × {1, . . . , D(m), †}.

We will sometimes use the suggestive notation t
(`)
i,† := t

(`)

i,D(`)+1
.

(iii) The number of customers in the system, (Nt)t>0, taking values in N = {0, 1, . . .}. We

stress that this number includes the customers in service: when Nt = m + n, then all

servers are occupied, and n customers are waiting.

Observe that (It,J t, Nt)t>0 is a continuous-time Markov chain on the state space I×D×N.
Throughout the queue is assumed to be stable, i.e., we impose the condition

λ <
m∑
`=1

1

EB(`)
,

where EB(`) can be evaluated in terms of α(`) and T (`) as in [?, Prop. III.4.1]. This stability

criterion can be interpreted as: the average number of clients arriving to the multi-server

queue per unit of time should be strictly majorized by the average number of clients that

can be served (by the m queues together) per unit of time.

Since servers are heterogeneous, we shall assume that the free server with the lowest index

serves the next customer arriving or waiting in the queue. In practice, one may wish to

prioritize faster servers; a service policy of this type can be achieved by labelling servers in

increasing order according to their average service times.

2.2. Objective and methodolody. Our first objective is to estimate the probability that

the backlog, max{Nt − m, 0}, exceeds a given level K ∈ N during a busy cycle, which we

define as an uninterrupted period during which the system has systematically been non-

empty. Such a period is initiated by the arrival of a customer to an empty system, and ends

by the departure of the last customer (leaving all servers idle). Notice that in our model

busy cycles are not i.i.d., as the state of the background process at the beginning of the busy

cycle has impact on its evolution (as opposed to for instance the situation with renewal-type

arrivals that was studied in [?]). We denote by Fi the event that a busy cycle started when
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the background process was in state i. We focus on estimating the probability %i(K) that in

a busy cycle the number of customers in the queue exceeds the value K conditional on Fi.

In practice, the probability %i(K) is usually required to be small, which makes estimating

it by crude Monte Carlo simulation inefficient [?, Ch. VI]. We are therefore interested in an

estimation procedure that relies on importance sampling [?, Section V.1] in order to limit the

required simulation effort. Importance sampling is based on imposing a ‘change of measure’

with respect to the original measure P. More concretely, the simulation is performed under

a different probability measure Q, and the simulation output is corrected by the ‘likelihood

ratios’ dP/dQ evaluated at the observed outcome in order to retain an unbiased estimation

procedure. The challenge is to find an alternative measure Q that effectively reduces the

variance of the estimator. This typically means that Q should be such that the event under

consideration becomes more likely to occur, but in addition it is required that the likelihood

ratio dP/dQ on the event of interest should have a low variance. This is made explicit in

[?, Section VI.1], where various efficiency measures for importance-sampling estimators are

discussed.

Compared to the efficient simulation of tail probabilities in an M/M/m queue, a number

of complications arises in our set-up. In the first place, as mentioned above, busy cycles are

not independent. Furthermore, since servers are heterogeneous, one needs to keep track not

only of the number of busy servers but also of their indices and current phases. In addition,

the arrival rate is not fixed but depends on the state of the background processes.

Observe, however, that during periods in which Nt is larger than m, the dynamics of the

process (It,J t, Nt)t>0 depend on It and J t only; one could say it is ‘level-homogeneous’. This

motivates that we split each busy cycle into subintervals in which Nt ∈ {m + 1,m + 2, . . .}
(i.e., the queue is not empty; we refer to these intervals as fully busy periods), and periods

in which Nt ∈ {1, . . . ,m} (i.e., the queue is empty; we call these intervals partially busy

periods). Thus, during a busy cycle the system alternates between partially and fully busy

periods until the system becomes idle again.

Based on the above, we can decompose %i(K) as follows. With %i(K,n) the probability

that the number of customers attains m+K for the first time in the n-th fully busy period

(conditional on Fi), we can write

%i(K) =
∞∑
n=1

%i(K,n).

With this decomposition in mind, we first consider the following approach to estimate %i(K),

which will be detailed in Section ??. During the fully busy periods, in which the system is

level-homogeneous, we use an alternative probability measure Q under which the queueing

system is unstable (so that the rare event under study will occur frequently). During partially

busy periods, in which the system is not level-homogeneous, we use the original measure P.

To establish particular efficiency properties, the number of fully busy periods (per busy

cycle) in which Q is applied should be bounded by an arbitrary constant C ∈ N; we return

to this subtlety in Section ??. Based on the insights gained in Section ?? we then show in

Section ?? how to obtain a change of measure that can be applied throughout the entire

busy cycle.
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3. Importance sampling procedure and its efficiency properties

In this section we describe an importance sampling routine for estimating the quantity

%i(K). As this probability relates to the event that a given level is reached before the

number of customers returns to 0, it suffices to track the evolution of the embedded discrete-

time Markov process, i.e., of the continuous-time Markov chain (It,J t, Nt)t>0 observed at its

transition epochs. With a mild abuse of notation we refer to the embedded process as

(In,Jn, Nn)n∈N ∈ I ×D × N, (2)

where n enumerates the epochs at which any of the three processes makes a transition. Note

that at each transition epoch n of this embedded process typically only one of the state

vector components changes, the exception being the occurrence of a departure (in which

case Jn may change, and Nn decreases by one).

Define σk to be the first time that (Nn)n∈N reaches level k. Assuming that a busy cycle

starts with the arrival of a first customer, the backlog exceeds K within that cycle if and

only if σK := σm+K+1 < σ0. The objective of this section is to find an efficient algorithm for

estimating the probability %i(K) that in a busy cycle the number of customers in the queue

exceeds the value K given that the background process is in i ∈ I at the start of the busy

cycle; that is,

%i(K) = P(σK < σ0 |Fi)

where Fi corresponds to the event that I0 = i, J
(1)
0 is sampled according to α(1), J

(2)
0 =

· · · = J
(m)
0 = †, and N0 = 1 (recall from Section ?? that the first customer is attended to by

the server with the lowest index).

The remainder of this section is organized as follows.

◦ First, in Section ??, we focus on a fully busy period; we conveniently shift time, such

that the start of the busy period corresponds to time 0. We fix a state (i, j) ∈ I ×D ,

and consider the probability

qi,j(K) := Pi,j(σK < σm
∣∣N0 = m+ 1) (3)

:= P(σK < σm
∣∣ I0 = i,J0 = j, N0 = m+ 1).

Observe that qi,j(K) can be interpreted as the probability that the backlog exceeds

K within a fully busy period given that such a period has started when the back-

ground process and the service times were in state (i, j). Relying on the fact that

during the fully busy period the system is level-homogeneous, we define a change of

measure for estimating qi,j(K). We then propose an importance sampling algorithm

for estimating %i(K) which applies this change of measure during the first C ∈ N
fully busy periods. (In Section ?? we will see how the rates can be twisted in general,

without the restriction of changing the measure only during the fully busy periods.)

◦ In Section ?? we investigate efficiency properties of the proposed estimators. In the

first place, we show that the importance sampling procedure for estimating qi,j(K)

has bounded relative error. In addition, the probabilities qi,j(K) and %i(K) are

proven to be ‘sufficiently similar’ that the procedure for estimating %i(K) has bounded

relative error as well.
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◦ Section ?? presents a numerical example, in which the new measure Q is computed.

It gives rise to a decomposition property, formalized in Section ??, which drastically

reduces the computational efforts required to evaluate the measure Q.

3.1. Change of measure. In this subsection we focus on the estimation of qi,j(K) as defined

in (??), with fixed i and j. Observe that in order to decide whether or not σK < σm, we

consider a time interval during which the value of Nn has not dropped below m+1. In other

words, the transition matrix of (In,Jn, Nn) does not depend on Nn during that interval. It is

essentially this property that enables the following construction of the alternative measure,

which mimics the construction in [?] for the easier case of the Markov fluid queue.

The discrete-time Markov chain (In,Jn, Nn) ∈ I × D × Z that behaves as (In,Jn, Nn)

during the fully busy period is characterized by the following transition probabilities. Define

ϕi,j := λi +
m∑
`=1

t
(`)
j`

+ qi.

Let e` be a vector of dimension m with a one on position ` and zeros otherwise. Then the

probability of moving from (i, j, n) to (i, j, n+ 1) is λi/ϕi,j (this corresponds to an arrival);

the probability of moving from (i, j, n) to (i′, j, n) is qii′/ϕi,j (this corresponds to a transition

of the background process); the probability of moving from (i, j, n) to (i, j+ (k− j`)e`, n) is

t
(`)
j`,k
/ϕi,j (this corresponds to a transition in the phase of one of the service times, without a

departure); and the probability of moving from (i, j, n) to (i, j+(k− j`)e`, n−1) is t
(`)
j`,k
/ϕi,j

with t
(`)
j`,k

:= t
(`)
j`,†α

(`)
k (this corresponds to a transition in the phase of one of the service times,

but now with a departure). The crucial observation is that during the fully busy period,

(In,Jn, Nn) behaves as (In,Jn, Nn).

We now point out how the alternative measure Q is constructed. Let ξi,j denote the net

increase of the number of customers Nn from an epoch that (In,Jn) is in (i, j) until (In,Jn)

arrives at a given reference state (i?, j?) (we show below that the choice of the reference

state does not affect the resulting new measure Q). Let xi,j ≡ xi,j(ϑ) := Eeϑξi,j denote the

moment generating function (mgf) of ξi,j . Relying on the usual ‘Markovian reasoning’, the

mgfs satisfy

xi,j =
λi
ϕi,j

xi,je
ϑ +

d∑
i′=1,i′ 6=i

qii′

ϕi,j
xi′,j +

m∑
`=1

D(`)∑
k=1,k 6=j`

t
(`)
j`,k

ϕi,j
xi,j+(k−j`)e`

+
m∑
`=1

D(`)∑
k=1

t
(`)
j`,k

ϕi,j
xi,j+(k−j`)e`e

−ϑ;

(4)

the first term on the right hand side corresponds to an arrival (hence the factor eϑ), the

second to a jump of the background process, the third to a phase-transition of one of the

service times (but not a departure), and the fourth to a departure and simultaneously the

start of a new service (hence the factor e−ϑ). The system of equations (??) can be regarded

as an eigensystem of the form Ax = x with eigenvalue 1; the matrix A ≡ A(ϑ) is irreducible

and non-negative. The vector x of mgfs is one of the corresponding eigenvectors. Bearing in

mind that mgfs are non-negative and relying on Perron-Frobenius theory, we conclude that
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x must be an eigenvector corresponding to the largest eigenvalue. In the sequel we denote

by ϑ? the value of ϑ such that the largest eigenvalue of A is equal to 1.

We now explain why ϑ? can be interpreted as the Cramér root [?, Section VI.2a] related to

the random variable ξ ≡ ξi?,j? . Recall that ξ is the net increase of the number of customers

between two subsequent visits of (In,Jn) to the reference state (i?, j?). The alternative

measure obtained by an exponential twist of the original measure P should be such that the

mgf of ξ evaluated in ϑ under Q matches the mgf of ξ evaluated in ϑ + ϑ? under P: in

self-evident notation,

EQ eϑξ = E e(ϑ+ϑ?)ξ,

with ϑ? such that E eϑ
?ξ = 1; see again [?, Section VI.2a]. Thus, the vector of mgfs x and

ϑ? are found from (??) by equating xi?,j? to 1. It is readily verified, however, that the choice

of the reference state has no impact, as Eq. (??) is linear in x.

Inspired by the above eigensystem, we now propose the following new measure Q corre-

sponding to an exponential twist of the distribution of ξ, to be used to estimate qi,j(K):

when (In,Jn) = (i, j),

λ◦i = λi e
ϑ? , q◦ii′ = qii′

xi′,j
xi,j

,
(
t
(`)
j`,k

)◦
= t

(`)
j`,k

xi,j+(k−j`)e`
xi,j

,(
t
(`)
j`,k

)◦
= t

(`)
j`,k

xi,j+(k−j`)e`
xi,j

e−ϑ
?

.
(5)

In the remainder of this subsection we evaluate the likelihood ratio that results from this

change of measure when estimating qi,j(K); as it turns out, this has a surprisingly simple

form. To this end, we consider an arbitrary path of the process (In,Jn) starting when the

fully busy period commences (that is, we have I0 = i, J0 = j, and N0 = m+ 1), and ending

at time τ = min{σK , σm}, visiting states (in, jn), where n denotes the n-th transition epoch

of the process (??). Let N+ denote the n ∈ S := {1, . . . , τ} corresponding to arrivals,

N the n ∈ S corresponding to transitions of the background process, N (`)
	 the n ∈ S

corresponding to a phase-transition of the service time at server ` (not being a service

completion), and N (`)
− corresponding to a service completion at server `. The likelihood

(under P) of such a path is thus given by, with i = i0 and j = j0,

∏
n∈N+

λin
ϕin,jn

∏
n∈N 

qin,in+1

ϕin,jn

m∏
`=1

∏
n∈N

(`)
	

t
(`)
jn,jn+1

ϕin,jn

m∏
`=1

∏
n∈N

(`)
−

t
(`)
jn,jn+1

ϕin,jn
. (6)

The likelihood of the same path under the new measure Q has the same form, except that

all probabilities in (??) are replaced by their counterparts under Q, where, due to (??) and

the definition of the new rates,

ϕ◦i,j := λ◦i +
m∑
`=1

(
t
(`)
j`

)◦
+ q◦i = λ◦i +

m∑
`=1

D(`)+1∑
k=1,k 6=j`

(
t
(`)
j`,k

)◦
+

d∑
i′=1,i′ 6=i

q◦ii′ = ϕi,j .

It follows that the likelihood ratio over the path takes the form

L =
∏
n∈N+

λin/ϕin,jn
λ◦in/ϕ

◦
in,jn

∏
n∈N 

qin,in+1/ϕin,jn
q◦in,in+1

/ϕ◦in,jn
×
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×
m∏
`=1

∏
n∈N

(`)
	

t
(`)
jn,jn+1

/ϕin,jn(
t
(`)
jn,jn+1

)◦
/ϕ◦in,jn

m∏
`=1

∏
n∈N

(`)
−

t
(`)
jn,jn+1

/ϕin,jn(
t
(`)
jn,jn+1

)◦
/ϕ◦in,jn

.

Because ϕi,j = ϕ◦i,j , by (??) this reduces to the ‘telescopic product’

L =
∏
n∈N+

e−ϑ
?
∏
n∈N 

xin,jn
xin+1,jn+1

m∏
`=1

∏
n∈N

(`)
	

xin,jn
xin+1,jn+1

m∏
`=1

∏
n∈N

(`)
−

xin,jn
xin+1,jn+1

eϑ
?

= e−ϑ
?Σ+

xi0,j0
xiτ ,jτ

eϑ
?Σ− , (7)

where Σ+ is the number of arrivals in S , and Σ− the number of departures. Observe that at

the end of each fully busy period we either have Σ−−Σ+ = −K if τ = σK , or Σ−−Σ+ = 1

if τ = σm. We find the following identities.

Corollary 1. Let I0 = i, J0 = j, and N0 = m+ 1. For any K ∈ N,

L1{τ = σK} = e−ϑ
?K xi,j

xiτ ,jτ
, L1{τ = σm} = eϑ

? xi,j
xiτ ,jτ

.

Remark 1. It is reassuring to note that the proposed change of measure satisfies Juneja’s

‘equi-probable cycle’ condition, which should hold for an asymptotically optimal change of

measure [?]. Namely, if (In,Jn, Nn)n∈N visits a specific state multiple times, the contribution

to the likelihood ratio of the interval between two such subsequent visits is equal to one.

Based on the analysis in this section we propose to change to the alternative measure

Q during the first C ∈ N fully busy periods, whereas during the partially busy periods

P should be used; details are provided in the appendix. The truncation at C is used in

Section ?? to prove that the procedure has bounded relative error. In practice, however, this

truncation can be neglected since C can be chosen arbitrarily large without compromising

the estimator’s performance; see Section ?? for a numerical assessment.

3.2. Bounds and relative error. In this subsection we derive bounds on %i(K) in terms of

the probability qi,j(K), which we then use to prove that the proposed importance sampling

estimation procedure leads to bounded relative error.

Define, in self-evident notation,

pi :=P(σm+1 < σ0 |Fi), pi,j := Pi,j(σm+1 < σ0 |N0 = m).

Observe that the number of fully busy periods in a busy cycle is bounded from above by a

geometric random variable G with success probability

p+ := max

{
max
i
pi,max

i,j
pi,j

}
< 1. (8)

In every one of these fully busy periods, level m+K + 1 is reached with a probability that

is bounded above by

q+(K) := max
i,j

qi,j(K).

Supposing that G = k, in each of the k attempts the level m + K + 1 can be reached. The

union bound then yields the following upper bound: uniformly in i ∈ I ,

%i(K) 6
∞∑
k=1

pk+(1− p+)k q+(K) =
q+(K)

p+

.
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Now focus on establishing a lower bound based on the probability of reaching m+K + 1 in

the first fully busy period. To this end, we define

p− := min
i

P(σm+1 < σ0 |Fi), q−(K) := min
i,j

qi,j(K).

Then it follows directly that, uniformly in i ∈ I ,

%i(K) > p−q−(K).

In order to make the bounds on %i(K) more explicit, we now show how qi,j(K) as defined

in (??) can be bounded. These bounds are derived by using the change of measure Q that

we identified above. Denoting, as before, the likelihood ratio in the fully busy period by L,

we have

qi,j(K) = EQ
i,j [L1{σK < σm} |N0 = m+ 1]

= EQ
i,j [L |E (K), N0 = m+ 1] Qi,j (E (K)|N0 = m+ 1) ,

with E (K) := {σK < σm}, and where the subscript i, j denotes conditioning on the initial

states I0 = i and J0 = j as before. Using Eq. (??) (or Corollary ??), we thus conclude

η−e−ϑ
?K 6 EQ

i,j [L |E (K), N0 = m+ 1] 6 η+e−ϑ
?K , (9)

with the constants η− and η+ defined by

η− := min
i,i′∈I ,j,j′∈D

xi,j
xi′,j′

, η+ := max
i,i′∈I ,j,j′∈D

xi,j
xi′,j′

.

Since I and D are finite, and recalling that x is componentwise positive, η− and η+ are

positive and finite.

Due to the fact that under Q the queueing system is unstable, we have that, as K →∞,

Qi,j (E (K)|N0 = m+ 1) ↓ Qi,j (E (∞)|N0 = m+ 1) > 0.

Furthermore, note that (??) holds for any fixed (i, j), thus, in particular, we can take the

minimum or the maximum over such states. We have thus shown that there exist positive

and finite numbers κ− and κ+ such that

κ−e−ϑ
?K 6 q−(K) 6 q+(K) 6 κ+e−ϑ

?K .

Combining this with the bounds on %i(K) established above, we have established the follow-

ing result.

Proposition 1. For any K ∈ N, i ∈ I , and j ∈ D , uniformly in i ∈ I ,

p−κ−e−ϑ
?K 6 %i(K) 6

κ+

p+

e−ϑ
?K .

Proposition ?? provides us with a lower and upper bound on %i(K), which are valid across

all K ∈ N, and which differ just by a multiplicative constant. We now use these bounds to

assess the estimator’s efficiency properties. The probability %i(K) is estimated by using Q
during the first C fully busy periods, and the original measure P otherwise. Denoting this

‘composite measure’ by QC , we rely on the identity

%i(K) = EQC [L1{σK < σ0} |Fi],
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with the event Fi as defined above; cf. [?, Section V.1a]. The relative error of an estimator

is defined by the ratio of the estimator’s standard deviation to its mean. Noting that the

estimator is unbiased, we obtain that its per-sample standard deviation can be written as

ν◦ =
√
EQC [L21 {σK < σ0} |Fi]− %i(K)2.

Thus, the relative error based on n simulation runs is

ν◦√
n %i(K)

=

√
EQC [L21 {σK < σ0} |Fi]

n%i(K)2
− 1

n
6

√
EQC [L21 {σK < σ0} |Fi]

n%i(K)2
. (10)

With p+ as defined in (??), we obtain, for any i ∈ I ,

EQC
[
L21 {σK < σ0} |Fi

]
6 e−2ϑ?K

C∑
k=1

eϑ
?kpk+(1− p+)η2k

+ . (11)

For any finite C the right-hand side in (??) is finite. (As an aside, observe that C may be

chosen as ∞ if eϑ
?
p+η

2
+ < 1, as then the geometric series converges.) Combining this with

the lower bound %i(K) > p−κ−e−ϑ
?K , the bounded relative error follows: the expression in

the left-hand side of (??) is bounded above by a finite expression that does not depend on

K.

Theorem 1. For arbitrary C ∈ N, the estimator for %i(K) based on QC has bounded relative

error.

Note that the upper bound given in (??) is smallest when C = 1, but this obviously does

not imply that the left-hand side of (??) is minimized for C = 1. In Section ?? we empirically

study the impact of the choice of C.

3.3. Numerical example. In this subsection we present a small numerical illustration.

Consider a two-server system, with d = 2 and D(1) = D(2) = 3. The arrival rates, initial

probabilities and transition rate matrices are

Q =

(
−0.5 0.5

0.1 −0.1

)
, α(1) =


0.5

0.3

0.2

0

 , T (1) =


−0.9 0.2 0.1 0.6

0.5 −1.5 0.5 0.5

0.2 0.2 −0.8 0.4

0 0 0 0

 ,

λ =

(
0.1

0.5

)
, α(2) =


0.5

0.2

0.3

0

 , T (2) =


−1 0.2 0.2 0.6

1 −2 0.5 0.5

0.2 0.2 −1 0.6

0 0 0 0

 .

We order the states lexicographically and solve the eigensystem (??) by first using bisection

to find a value of ϑ such that the largest eigenvalue of the matrix A defining the eigensystem

equals one. One thus obtains ϑ? = 0.86. We normalize the eigenvector corresponding to this

eigenvalue such that its first entry is one, and call the resulting vector x.

For example, for states i = 1, i′ = 2, j = (1, 1), j ′ = (2, 3), we then have xi,j = 1,

xi,j′ ≈ 1.09, xi′,j ≈ 1.99, xi′,j′ ≈ 2.17 (rounded to two decimal digits). We observe the
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remarkable property that (up to the rounding error) xi′,j′/xi′,j = xi,j′/xi,j . Generally, it

turns out that the obtained mgfs x are such that

xi,j
xi,j′

=
xi′,j
xi′,j′

and
xi,j
xi′,j

=
xi,j′

xi′,j′
, for any i 6= i′, j 6= j ′;

indicating that there is a certain decoupling among the servers as well as between servers and

arrivals. The decoupling means that under Q (as was the case under the original measure P),

(i) the transition rates of the background process do not depend on the phases the customers

in service are in, (ii) the service-time distribution at any particular server does not depend

on the state of the background process nor the phases the other customers are in.

3.4. The structure of A. The observed decoupling can be formally established as follows.

Note that if the states (i, j1, . . . , jm) are ordered lexicographically, then the matrix A defining

the eigensystem given in (??) can be decomposed as

A ◦ϕ1 = Λ eϑ ⊗ ID +Q⊗ ID + Id ⊗R =
[
Λ eϑ +Q

]
⊕R, (12)

where ◦ denotes the Hadamard product, ϕ is the column vector with entries ϕi,j , 1 is a row

vector of ones, Λ := diag{λ}; D :=
∏m

`=1D
(`); ID is the D × D-identity matrix; ⊕ and ⊗

denote the Kronecker sum and product, respectively; Q denotes the matrix Q−Q ◦ Id; and

the ‘remainder term’ R is of dimension D ×D and depends on T (`) and T
(`)

but not on λ

or Q. Because the eigenvalues of a Kronecker sum are given by the sums of the eigenvalues

of each Kronecker summand [?, Thm 13.16], this decomposition shows that the eigensystem

can be split up into a part corresponding to arrivals and a part corresponding to services.

Let us now consider the remainder term R, which corresponds to the service processes.

We note that R contains D− :=
∏m−1

`=1 D(`) block matrices of size D(m) × D(m) which have

the following structure.

(i) The block matrices on the diagonal are of the form

T (m) + T
(m)

e−ϑ + ID(m)e−ϑ
m−1∑
`=1

t
(`)
j`,j`

.

(ii) Off-diagonal block matrices are either of the form
[
t
(`)

j`,j
′
`

+ t
(`)

j`,j
′
`
e−ϑ
]
ID(m) with ` < m,

or they are zero.

As it turns out, R can thus be decomposed as

R =
m⊕
`=1

(
T (`) + T

(`)
e−ϑ
)
.

Inserting this expression in (??) we see (e.g. from [?, Thm 13.16]) that the mgf x that we

found as an eigenvector of A can be computed as the Kronecker product of eigenvectors of

m + 1 decoupled eigensystems, corresponding with the arrivals and the services for each of

the m servers. In this way, while the dimension of A is dD, the measure Q can be found

by solving a system of dimension just d+
∑m

`=1D
(`); in the above example this would yield

a reduction of dimension 18 to dimension 8. We detail such an alternative approach in the

next section.
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4. Efficient computation of change of measure

As mentioned above, an intrinsic problem of the change of measure defined in Section ??

is that the underlying eigensystem may become prohibitively large, and as a result the

computation of Q becomes problematic. Already for the small example of Section ?? the

length of the vector x is 18; if one has 10 servers with 3-dimensional phase-type distributions,

and if d = 4, the dimension of the matrix A is as high as 4·310 = 2.36·105. This explains why

we explore an alternative approach to compute Q, in which the twist of the arrival processes

and the service times do not interrelate. In the above example with 10 servers, this means

that the alternative measure can be found by solving a system of dimension 34. The ‘catch’

is that the decoupling-based approach requires function evaluations that are more involved,

and thus for low-dimensional problems the approach of Section ?? may be preferred; see also

Section ??, where we discuss simulation examples.

4.1. Preliminaries. We first recall a few auxiliary results. Consider a sequence of i.i.d. pos-

itive random variables (Rn)n∈N (with a bounded mgf around 0), and its associated counting

process

R(t) := sup

{
n ∈ N :

n∑
i=1

Ri 6 t

}
.

Define the associated limiting logarithmic mgf (ll-mgf):

R(ϑ) := lim
t→∞

1

t
logEeϑR(t).

Let c be some number larger than ER (with R being distributed as R1). Consider a (stable)

queue that drains at a constant rate c, where unit-sized jobs arrive with interarrival times

(Rn)n∈N. From e.g. [?] we have the logarithmic decay rate of the probability P(W > u) that

the stationary workload W exceeds u,

lim
u→∞

1

u
logP(W > u) = −ϑ,

obeys R(ϑ)− cϑ = 0. There is however a second way to compute the decay rate, viz. as the

solution of r(−cϑ)eϑ = 1, with r(ϑ) := EeϑR; see e.g. [?]. Note that both lead to the same

(c, ϑ)-pairs. A minor computation yields that

R(ϑ) = −r−1(e−ϑ). (13)

We have thus expressed the ll-mgf R(·) in terms of the mgf of R. For instance for R having

an exponential distribution with mean µ−1, this yields R(ϑ) = µ(eϑ− 1), as it should (recall

that in this case R(t) is Poisson with mean µt). See [?] for more background on this type of

inversion result.

Let A (ϑ) be the ll-mgf corresponding with the interarrival times (An)n∈N, and B(`)(ϑ)

the ll-mgf corresponding with the service times (B
(`)
n )n∈N (in case there would always be

jobs to serve). Then the decay rate of the probability P(Q > K) that the stationary number

of customers Q exceeds K, i.e.,

lim
K→∞

1

K
logP(Q > K) = −ϑ?,
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is the solution ϑ? of

A (ϑ) +
m∑
`=1

B(`)(−ϑ) = 0

where, with A(t) and B(`)(t) defined analogously to R(t),

A (ϑ) := lim
t→∞

1

t
logEeϑA(t), B(`)(ϑ) := lim

t→∞

1

t
logEeϑB(`)(t).

Invoking (??) we conclude that ϑ? solves

A (ϑ) =
m∑
`=1

(
b(`)
)−1

(eϑ), (14)

where, with S(`) and s(`) as in Eq. (??),

b(`)(ϑ) = α(`)
(
−ϑID(`) − S(`)

)−1
s(`) (15)

is the mgf associated with server ` (see, e.g., [?, Thm 4.3]).

Regarding the arrival times this means that we have to find an MMP process such that

its ll-mgf is A ◦(ϑ?) = A (ϑ + ϑ?)−A (ϑ?). As can be found in e.g. Kesidis, Walrand, and

Chang [?], A (ϑ) equals Ξ(Q+ (eϑ−1) diag{λ}), where Ξ(M) denotes the largest eigenvalue

of M .

Regarding the service times, (??) implies that we should construct Q such that under this

new measure the ll-mgf of the service times at server ` equals(
B(`)

)◦
(ϑ?) = −

(
b(`)
)−1

(eϑ+ϑ?) +
(
b(`)
)−1

(eϑ
?

). (16)

We now point out how the corresponding changes of measure can be performed.

4.2. Twist of the arrival process. As mentioned, A (ϑ) equals Ξ(Q + Λ(eϑ − 1)), and

hence we wish to find Λ◦ := diag{λ◦} and Q◦ such that

Ξ
(
Q◦ + Λ◦(eϑ − 1)

)
= Ξ

(
Q+ Λ(eϑ+ϑ? − 1)

)
−A (ϑ?),

where it is noted that the right hand side of the previous expression can alternatively be

written as, with Id denoting the d× d-identity matrix, Ξ
(
Q+ Λ(eϑ+ϑ? − 1)− IdA (ϑ?)

)
.

Suppose we observe an auxiliary system with the Markov-modulated Poisson process being

the input, but served at a constant rate c (larger than the mean input rate of the MMP

process). As we argued in the previous section, the decay rate ϑ? of the auxiliary system can

be evaluated by solving A (ϑ) = cϑ. Alternatively, we can find a system of equations that

ϑ? should satisfy, similar to the approach in Section ??. Let zi denote the mgf of the net

increase in the number of customers in the auxiliary system during a period in which the

background process transitions from i to an arbitrary reference state. Then (ϑ?, zi) should

satisfy

zi =
∑
j 6=i

qi,j
qi

∫ ∞
0

qi e
−qite−ϑcteλi(e

ϑ−1)dt =
∑
j 6=i

qij
qi − λi(eϑ − 1) + cϑ

zj,

which can be rewritten as (
− λi(eϑ − 1) + cϑ

)
zi =

d∑
j=1

qijzj.
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Inserting cϑ? = A (ϑ?), we conclude that for ϑ = ϑ? there exists a componentwise positive

vector z such that (
− (eϑ

? − 1)Λ + IdA (ϑ?)
)
z = Qz. (17)

Now let Z denote diag{z}. Observe that any eigenvalue of Q+ (eϑ+ϑ? − 1) Λ− IdA (ϑ?), is

eigenvalue of

Z−1
(
Q+ (eϑ+ϑ? − 1) Λ− IdA (ϑ?)

)
Z

= Z−1QZ + (eϑ+ϑ? − 1) Λ− IdA (ϑ?)

= Z−1QZ + (eϑ
? − 1) Λ− IdA (ϑ?) + (eϑ − 1)Λ◦

(with Λ◦ := Λeϑ
?
) as well. Now note that, by virtue of (??),

Q◦ := Z−1QZ + (eϑ
? − 1) Λ− IdA (ϑ?)

is a generator matrix. We have thus found that the desired change of measure is

λ◦i := λie
ϑ? , q◦ij := qij

zj
zi
, q◦i := qi − λi(eϑ

? − 1) + A (ϑ?). (18)

4.3. Twist of the service times. We start by pointing out that realizing the desired

change of measure such that the ll-mgf becomes (??) amounts to exponentially twisting

the service times at server ` by some ζ?` that we specify below. We wish to find service

times (with mgf b
(`)

(·)) such that (??) equals −(b
(`)

)−1(eϑ). Observe that (under the usual

regularity conditions) f−1(yu) = g−1(y) + v (for all y) is equivalent to g(x) = f(x + v)/u

(for all x). This means that we have to identify a b(·) such that

b
(`)

(ζ) =
b(`)
(
ζ + (b(`))−1(eϑ

?
)
)

eϑ?
,

which corresponds to exponentially twisting the service times at the `-th server with twist

ζ?` := (b(`))−1(eϑ
?
).

We proceed by explaining how the change of measure can be found for each server. Con-

sider a generic server with phase-type distributed service times B, parametrized by the initial

distributionα, the transition matrix T , and the dimensionD+1. The twisted measure should

satisfy

EQeζB =
Ee(ζ+ζ?)B

Eeζ?B
, (19)

where ζ? = b−1
(
eϑ

?)
as argued above. Consider all paths (i0, i1, . . . , iτ+1) of the underlying

Markov process, starting from i0 (sampled according to α) and ending at iτ+1 = D+ 1. Let

hj be the time spent between states ij and ij+1. The probability of such a realization is

αi0
ti0i1
t0
t0e
−ti0h0 · · ·

tiτ iτ+1

tiτ
tiτ e

−tiτ hτ dh0 · · · dhτ .

Then the right hand side of (??) can be written as, with Eeζ
?B = b(ζ?) = eϑ

?
,

e−ϑ
?
∑

all paths

∫ ∞
0

∫
hj :

∑τ
j=0 hj=h

αi0ti0i1e
−ti0h0 · · · tiτ iτ+1e

−tiτ hτ e(ζ+ζ?)hdh0 · · · dhτ dh,

whereas the left hand side reads∑
all paths

∫ ∞
0

∫
hj :

∑τ
j=0 hj=h

α◦i0t
◦
i0i1
e−t

◦
i0
h0 · · · t◦iτ iτ+1

e−t
◦
iτ
hτ eζhdh0 · · · dhτ dh.
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We wish to identify α◦ and T ◦ such that both expressions match. To this end, solve the

following eigensystem:

−ζ?yi =
D+1∑
j=1

tijyj for i = 1, . . . , D, eϑ
?

yD+1 =
D∑
i=1

αiyi.

Then define

α◦i :=
αi
eϑ?

yi
yD+1

, t◦ij := tij
yj
yi
, t◦i := ti − ζ?. (20)

The following two observations are crucial:

◦ (α◦, T ◦) corresponds to a phase-type distribution. To this end, note that, by defini-

tion of the vector y, the new initial distribution α◦ is non-negative and sums to 1.

In addition, ∑
j 6=i

t◦ij =
∑
j 6=i

tij
yj
yi

= ti + ζ? = t◦i .

◦ It is an easy verification that for the above defined (α◦, T ◦) both mgfs match, as

desired.

Thus, the proposed twist of the service times corresponds to a valid change of measure.

Note that the twisted rates we found in this and the previous subsection take the same

form as those in Section ??, the only difference being the mgfs involved. The counterpart

to the likelihood ratio given in Eq. (??) is

L =

(
e−ϑ

?Σ+
zi0
ziτ

)
×

(
eϑ

?Σ−

m∏
`=1

y
(`)
j0

y
(`)
jτ

)
,

where, with a slight abuse of notation, zi0 and ziτ correspond to the first and last state of

the background process, and y
(`)
j0

and y
(`)
jτ

correspond to the first and last phase of server `,

respectively, given that we observe a path of length τ as defined in Section ??. In line with

the Kronecker decomposition found in Section ??, we thus see that xi,j = zi
∏m

`=1 y
(`)
j`

.

Remark 2. Recall that in the set-up of Section ?? we did not quite find the change of

measure of the individual service times, as we only identified the twisted version of t
(`)
j`,k

:=

t
(`)
j`,†α

(`)
k rather than the twisted version of t

(`)
j`,† and α

(`)
k individually. In this section we showed

how to twist the rates for each server independently. In other words, we can now use the

twisted rates found in this section throughout the entire busy cycle, i.e., also outside of fully

busy periods. Note that outside of the fully busy period the (total) rates of leaving state

(i, j), that is, the counterparts to ϕi,j and ϕ◦i,j defined in Section ??, are not equal so that

the corresponding terms in the likelihood ratio do not cancel. This means that to evaluate

the likelihood ratio, it needs to be continuously updated when the process is not in a fully

busy period as it does not have a clean form of the type (??).

Remark 3. There is one important situation in which all expressions simplify considerably:

that of no modulation and identical servers. In fact, in this case the interarrival times do not

need to be exponential, but any renewal sequence works. To see this, suppose the interarrival

times have mgf a(·) and the service times (at each of the servers) have mgf b(·). Then (??)

reeds

−a−1(e−ϑ) = mb−1(eϑ),
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Figure 1. Ratio of log(ρ̂1(K))/K and its limit −ϑ? for a two-server system with service times

that are Erlang-distributed with shape parameter 3 and rate parameters µ1 and µ2, respectively.

The horizontal line indicates a ratio of one.

which is solved by ϑ? := − log a(−mα), where α is such that

log a(−mα) + log b(α) = 0,

which coincides with Eq. (1.7) in [?].

5. Simulation examples

In this section we investigate a number of numerical examples, to assess the efficacy of the

proposed procedure, and to learn about various aspects of the rare-event behaviour of the

multi-server queue under study.

We start by evaluating the impact of heterogeneity among servers on the speed of decay

and the the relative error of the estimation procedure. We consider a two-server system with

Erlang distributed service times. The service times of Server 1 are distributed with shape

parameter 3 and rate parameter µ1 while the service times of Server 2 are distributed with

shape parameter 3 and rate parameter µ2; the initial phase is distributed as α = (0.5, 0.2, 0.3)

in both cases. The arrival process is Poisson with rate 0.1 (i.e., not modulated). We estimate

ρ1(K) using the change of measure proposed in Section ?? during practically all fully busy

periods; that is, we employ the algorithm stated in the appendix with C chosen very large.

Figure ?? shows that the convergence of each scaled logarithmic importance sampling

estimator (calculated from 107 samples) to its corresponding limit −ϑ? appears to be faster

when servers are more heterogeneous. For µ1 and µ2 fixed, it turns out that the corresponding

relative error values are roughly independent of K (in line with our theoretical findings).

More precisely, we obtained that for µ1 = µ2 = 1 the relative error of a generic sample is

approximately 2 (across a wide range of K-values, independently of n), for µ1 = 1, µ2 = 2

it is 2.82, for µ1 = 1, µ2 = 3 it is 3.96, and for µ1 = µ2 = 2 it is 7.7. Thus, as one would

expect, the deviation from the mean is larger when servers are more heterogeneous. The

comparison of the two homogeneous examples suggests that faster service tends to have a

negative impact on the relative error performance.
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Figure 2. Ratio of log(ρ̂1(K))/K and its limit −ϑ? for (A) the example from Section ??, and (B)

a large-scale example with 10 servers. The horizontal line indicates a ratio of one.

Furthermore, we can check numerically that, as it should be, the twisted rates are the same

as those obtained in the way we described in Section ??. We now detail how we computed

the change of measure using that approach. The underlying idea is that we determine ϑ?

by solving (??); once ϑ? has been determined, we can twist the arrival and service processes

as in (??) and (??), respectively. In order to solve (??), the following steps need to be

performed:

◦ In the first place it requires the evaluation of A (ϑ) and (b(`))−1(eϑ) (for ` = 1, . . . ,m)

which typically cannot be done in closed-form so that we have to resort to numerics.

Here, we used a bisection procedure. To determine A (ϑ) for every ϑ the eigenvalues

of a d-dimensional matrix need to be found; to determine (b(`))−1(eϑ) the inverse of

the function b(`)(ζ) as defined in (??) is to be evaluated.

◦ In the second place a numerical solver needs to be used to solve (??). We again used

bisection to perform this step.

For a small example as the ones just discussed, the method of Section ?? may be preferred

for its conceptual simplicity. For examples of a larger dimension on the other hand, the

method of Section ?? for computing the change of measure quickly becomes slow or even

infeasible due to memory constraints, and the method of Section ?? is to be preferred.

We now discuss such a large-scale example, which is too large to be efficiently solved using

the method of Section ??. We again assume that service times have an Erlang distribution

with shape parameter 3. In a system with 10 servers, we set α(`) = (0.5, 0.2, 0.3), and choose

the Erlang rate parameter as `/3, for ` = 1, . . . ,m. We set d = 4, λ = (1, 2, 3, 4), and let Q

have off-diagonal entries 0.1 (and diagonal entries −0.3). Recall that the dimension of the

matrix A defining the eigensystem (??) is as large as 2.36 · 105. Despite this dimension, it

turns out that with the methodology of Section ?? the change of measure can be computed

in less than a second. In Figure ?? we show the ratio of the scaled logarithmic importance

sampling estimator and its limit −ϑ? obtained in 105 simulation runs for (A) the small

example from Section ??, and (B) the large-scale example with 10 servers; in both cases the

change of measure is evaluated as described in Section ??, and applied during all fully busy

periods.
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Figure 3. Depicted is log(ρ̂1(K))/K obtained for the example of Section ??. The horizontal

dotted line indicates the limit value −ϑ?. The change of measure is evaluated using the methodology

developed in Section ??, and applied either throughout the entire busy cycle, only during fully busy

periods (C = ∞), or never (crude MC), yielding the (scaled logarithmic) upper 95% confidence

bounds that are indicated by the dashed lines.

In the approach we have developed, we use the alternative measure Q only during (a

number of) fully busy periods. As mentioned in Remark ??, thanks to the decoupling of

servers that we described in Section ??, the twisted rates can also be applied throughout

– during the entire busy cycle – rather than only during fully busy periods. Considering

again the example of Section ??, we compare the sample confidence interval obtained under

crude Monte Carlo estimation to that achieved when the change of measure is applied either

throughout, or only during fully busy periods (with C = ∞). Figure ?? shows the scaled

logarithmic unbiased estimate of %1(K) averaged over 105 runs. The limit −ϑ? is indicated

by the horizontal line. The dashed lines indicate the scaled logarithmic upper bounds of

the 95% standard normal confidence intervals. As one would expect, the change of measure

significantly improves the accuracy of the estimation procedure for a fixed number of runs.

In addition, we observe that when the change of measure is applied throughout (rather than

only during fully busy periods) the confidence is noticeably more narrow.

We now investigate the impact of the choice of C for the same example. In Figure ?? we

compare the relative errors obtained for various values of C in 107 runs, where C denotes

the number of fully busy periods during which the change of measure is applied. The values

obtained when the twisted rates are used either never (crude Monte Carlo) or throughout

the entire busy cycle are also shown. The relative error obtained for the crude Monte Carlo

estimator (corresponding to C = 0) increases exponentially as K grows large. For large C

indeed we see that relative error is independent of K. For smaller C instead, the relative

error does increase with K until it drops sharply for K large enough. It appears that for

small K if the event did not occur in the first period, then it may still occur afterwards even

though the original measure is used, which causes a large variance.

Note that for large K the relative error corresponding to C = 1 appears to be the smallest,

in alignment with the upper bound we found in Section ??. For an explanation, recall that

each fully busy period during which the change of measure is applied contributes to the

likelihood ratio by a factor between eϑ
?
ζ− and eϑ

?
ζ+ (cf. Corollary ??), and thus potentially
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Figure 4. Logarithmic relative error values obtained for crude Monte Carlo (MC) estimation of

ρ1(K) compared to the values obtained under importance sampling when the change of measure

is applied during the first C > 0 fully busy periods or throughout; the rates are chosen as in

Section ??.

increases the variance of the estimator (where it should be kept in mind that ζ− < 1, ζ+ > 1,

and ϑ? > 0). In this sense, each additional fully busy period may have a negative impact

on the quality of the estimator. Choosing a good value for C amounts to finding a proper

balance between increasing the likelihood of the event of interest and minimizing the possible

additional contribution to the variance of the likelihood ratio.

In the experiments that we performed, if the change of measure is applied throughout,

then the relative error is remarkably low at about 0.99, substantially lower than when it is

applied only during fully busy periods. We see a similar improvement in terms of estimation

accuracy for the other examples discussed in this section when Q is applied throughout.

6. Discussion and concluding remarks

In this paper we developed an algorithm for estimating the probability that the number

of customers in a multi-server queueing system reaches a high value. The input is Markov-

modulated Poisson, whereas the service-times have server-dependent phase-type distribu-

tions. We have identified explicit bounds on the probability under consideration as well as

the associated likelihood ratio, which help quantifying the relative error. In particular we

have proven that the relative error of our estimator is bounded. We also develop a technique

to efficiently compute the alternative measure to be used in our importance-sampling based

algorithm, which remains tractable even when the dimension of the system (in terms of the

number of servers and the dimensions of the phase-type distributions) is large.

A couple of experiments provide us with indications of the significant speed-up that can be

achieved by the proposed algorithm relative to näıve simulation. The focus is on estimating

%i(K), i.e., the probability that the backlog (that is, the number of customers or jobs waiting

in the queue) during a busy cycle exceeds a given level K (with the background process being

in state i at the beginning of the busy cycle). The method, however, directly extends to

a procedure for estimating the fraction of customers or jobs entering the system while the

backlog is larger than K. To this end, first note that this quantity can be written as the

ratio of the mean number of customers that entered the system while the backlog is larger
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than K during a busy cycle, and the mean total number of customers that entered during

a busy cycle. Then the idea is to estimate the numerator and denominator of the ratio

separately. The denominator does not contain a rare event, and hence can be estimated

using the original measure. The numerator does involve a rare event, but simulating under

Q (corresponding to a positive drift) would mean that terminating the busy cycle would

become a rare event. Following e.g. [?], this issue can be remedied by applying a measure-

specific dynamic importance sampling approach, where Q is switched off as soon as K has

been reached. Along the same lines, one could set up a procedure to estimate the fraction

of customers lost in the corresponding model with a waiting room of finite size K, as was

done for a similar system in [?].

In this paper we considered specific arrival and service processes, but we anticipate that

importance sampling procedures for related processes can be developed with the same tech-

niques. As we argued, the MMP is suitable for modelling overdispersion, but there are

various other processes that could be used to this end, such as the Cox processes advocated

in [?].
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Appendix A. Importance sampling algorithm

for the embedded Markov chain

We provide pseudo code for a single run of the importance sampling algorithm as suggested

in Section ??. Note that in the description of the algorithm, qi, λi, and t
(`)
i,j denote the current

rates, that is, they may correspond to either P or Q depending on how the rates were set in

the previous step of the algorithm.

If the change of measure is computed as in Section ?? instead, then we need to replace xi,j
by zi

∏m
`=1 y

(`)
j`

. Thanks to the decoupling, it is then also possible to apply the change of mea-

sure throughout during the entire busy cycle (the algorithm needs be modified accordingly

with due regard to Remark ??).

Algorithm. One run of the importance sampling algorithm that applies the change

of measure only during the first C fully busy periods.

1: Set N = 1, L = 1, c = 0. Set i as the initial state of the background process. Generate

j1 ∼ α(1), and set j` = † for ` = 2, . . . ,m.

2: while N ∈ {1, . . . ,m+K} do
3: if N 6 m then

4: Set all rates to the original rates. Let ϕi,j = λi+
∑

`: j`>0 t
(`)
j`

+qi. Set p to be the vector

with entries λi, qii′ for all i′ 6= i, and t
(`)
j`,k

for all ` such that j` 6= † and k ∈ {1, . . . , D(`), †}.
Generate the next event from the discrete distribution p/ϕi,j .

5: if Arrival then

6: N ← N + 1
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7: if N > m then

8: c← c+ 1

9: if c ≤ C then

10: L← Lxi,j
11: end if

12: end if

13: else if Transition of the background process then

14: i← i′, where i′ corresponds to entry qii′ of p

15: else if Phase transition at server ` to k 6 D(`) then

16: j` ← k

17: else if Phase transition at server ` to † then
18: j` ← †, and N ← N − 1

19: end if

20: else if N > m then

21: if c 6 C then

22: Set all rates as in (??).

23: end if

24: Update ϕi,j , and set p as for the partially busy period but including rates t
(`)
j`,k

. Generate

the next event from the discrete distribution p/ϕi,j .

25: if Phase transition at server ` with departure then

26: j` ← k, where k corresponds to entry t
(`)
j`,k

of p, and N ← N − 1

27: if N = m and c 6 C then

28: L← L eϑ
?
/xi,j

29: end if

30: else if Other transition then

31: Proceed as for the partially busy period.

32: end if

33: end if

34: end while

35: if N > m+K and c 6 C then

36: L← L e−Kϑ
?
/xi,j

37: end if

38: return L1{N > m+K}


