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What is a bandit problem?
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Classical Multi-armed Bandit Problem
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Classical Multi-armed Bandit Problem

Pick k out of d independent arms at every decision time.
States are resting unless the arm is played.
An optimal policy is known (Gittins index).
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Channel Selection Problem

Select 1 or 27

T
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Channel Selection Problem
Collect reward X1 (t)

(tafy)

Select 1
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Restless Bandit Problems

P. WHITTLE (1988):
Restless Bandits: Activity Allocation in a Changing World.
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Partially Observable

Exploration vs Exploitation:

Should we collect new information
or opt for the immediate payoff?

6
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States and Belief States

State processes are assumed to be AR(1),
Xl(t) = QOXZ(t — 1) + €Z'(t)7

where ¢ € (0,1), and &;(t) ~i;4. N(0,02).
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Bandits for Channel Selection

States and Belief States

State processes are assumed to be AR(1),
Xl(t) = QOXZ(t — 1) + €i(t),

where ¢ € (0,1), and &;(t) ~i;4. N(0,02).

Belief state of arm ¢ at time ¢:

it) == E[Xi() | Xi(t = m(0),m(0)] = ¢ O X, (6 mi0)),

— p2mi(t)
vi(t) := Var (Xi(t) | Xi(t - m(t)),m(t)) = 021110;27

where 7);(t) is the number of time steps since arm 7 was last played.
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Why is the Gaussian model special?
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Why is the Gaussian model special?

e The belief states (y;(t), vi(t)) contain all relevant
information available at time ¢.
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Bandits for Channel Selection

Why is the Gaussian model special?

e The belief states (y;(t), vi(t)) contain all relevant
information available at time ¢.

@ 1;(t): expected gain from exploiting an arm,
v;(t): the need for exploring it.
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Belief State Evolution

From X;(t) = pX;(t — 1) + &;(t):

(@ ui(t), P*vi(t) +0?),

(it +1), vi(t+1)) = { (@N(Mi(t)a vi(1)) , (’2)’

ai(t) = 0,

ai(t) =1.
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Belief State Evolution

From X;(t) = pX;(t — 1) + &;(t):

(pui(t), e*vi(t) +0?), ai(t) =0,

(it +1), vt +1)) = {(@N(M(t), vi(t)), 02), a;(t) = 1.

= Markov Decision Process
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Chain of Actions

(p,v) >

observe state,

update belief
P collect reward
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Index Policies
An index policy is of the form
d
my(p,v) = argmax {Z’y (i, v4) az}
a:Z‘Z:1 ai=k \i=1
The index function v maps the belief state of each arm to some

priority index.
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Bandits for Channel Selection

Index Policies

An index policy is of the form

d
my(p,v) = argmax {Z 7 (b, 3) az}

azzgzl a;i=k \ j=1

The index function v maps the belief state of each arm to some
priority index.

Example: Myopic Policy with v (p,v) = p.
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© Whittle Index: Structural Results
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Definition

Structural Results

Many-Arms Asymptotics

Here 7r<’,\pt is the optimal policy for a

one-armed bandit problem with subsidy,

where the decision maker observes and collects the reward when
playing, and obtains a subsidy A otherwise.

Qe
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Structural Results

Optimality Equation

V(1 v) = max { A BVNop, ¢*v+0%),

p+ B /_oo VM ey, 0%) duu(y) dy}
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Structural Results

Threshold Policy

The optimal policy for the one-armed bandit problem with subsidy
is a threshold policy.
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Switching curves: above the curve the optimal action is “play”,
below “do not play”. 3 =0.8, ¢ =0.9, 0 = 2.
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Monotonicity of the Whittle Index

The Whittle index 4"V (1, v) is monotone non-decreasing in y and
v, and generally not constant.
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© Parametric Index: Many-Arms Asymptotic Behaviour
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Parametric Index

Structural Results

Many-Arms Asymptotics

The correction term Av allows to adjust the priority the decision
maker wants to give to exploration.

DA
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Asymptotic Behaviour: Intuition

o Consider the system under stationarity. Let d — oo while
kd/d — pP.
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Asymptotic Behaviour: Intuition
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@ Note that the stochastic processes of indices are generally
dependent.
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Asymptotic Behaviour: Intuition

o Consider the system under stationarity. Let d — oo while
kd/d — pP.

@ Note that the stochastic processes of indices are generally
dependent.

@ As we add more arms to the system, it approaches an
equilibrium state in which the proportion of arms associated
with a certain belief state remains fixed.
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Asymptotic Behaviour: Intuition

o Consider the system under stationarity. Let d — oo while
kd/d — pP.

@ Note that the stochastic processes of indices are generally
dependent.

@ As we add more arms to the system, it approaches an
equilibrium state in which the proportion of arms associated
with a certain belief state remains fixed.

@ Thus, in the limit, the action chosen for a certain arm is
independent of the current belief state of any other arm.
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Conjecture: Many-Arms Behaviour

Assume that empirical distribution M (x

,0) converges weakly to
non-random measure my (B, 0) for all h > 0,

M(B,0) < my,(B,0),
as d — oo while limg_, oo kg/d = p. Then, for all t,h > 0,

M (B, t) 2 my(B,t).
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Many-Arms Asymptotics

State of System

fn(z,t): Mass of arms played h + 1 time units ago with
conditional mean in [z, dx)
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Many-Arms Asymptotics

State of System

fn(x,t) - Mass of arms played h + 1 time units ago with
conditional mean in [z, dx)

State of the system at time ¢ is described by
{fa(z,t), 2 € R, h=0,1,2,...},

where

[ S =t
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Threshold Process

0 (t) := €5 (t) — O M () such that

() =0

defines the proportion of p “best” arms as determined by the
parametric policy.
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Many-Arms Asymptotic Behaviour

L fna (g,t—l) 1{z<pli(t—1)},  h>1,
fh(xat) =
LS Sy Bean (2) Falzt =1y dz, h=o.
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Many-Arms Asymptotic Behaviour

éfh—l (i,t—l) Wz <pli(t—1)}, h>1,
fh(ZE,t) =
%Z;L.OZO jZ;(t_l) ¢Z,Vh <%> fh(zyt - 1) dz, h - 0

Motivated by evolution of belief states:
(pui(t), *vi(t) +0%), ai(t) =0,

(it +1), vi(t +1)) =
(O Y0y, m(t)» 02) a;(t) = 1.
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Many-Arms Asymptotic Behaviour

(g t-1)1{z<plt-1}, A=l
fh($at) =
é ZZO:() fé%o(t—l) (/5271111 <£> fh(zvt - 1) dZ: h=0.

Motivated by evolution of belief states:
(puit), @*vi(t) +0?), ai(t) =0,

(it +1), vt +1)) =
(SOY HORZIOE 02)7 a;(t) = 1.
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Conjecture: Equilibrium State

measure-valued

dynamical system ~

at equilibrium

Many-Arms Asymptotics

one-armed process:

active whenever
index exceeds ¢*
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average reward per arm
P
R
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d

Comparison of average rewards achieved per arm. 6 is found by
optimizing (i) the problem with d arms (67), and (ii) the
one-armed problem (0*). ¢ =0.9, 0 =2, p= 0.4, T = 10°.
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Thank you!
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