Exploration vs Exploitation with Partially Observable Gaussian Autoregressive Arms

Julia Kuhn^{•,*,°}, Michel Mandjes*, Yoni Nazarathy^{•,°}

• The University of Queensland, *University of Amsterdam °Supported by the Australian Research Council grant DP130100156.

11 December 2014

What is a bandit problem?

Classical Multi-armed Bandit Problem

Classical Multi-armed Bandit Problem

Pick k out of d independent arms at every decision time. States are *resting* unless the arm is played. An optimal policy is known (Gittins index).

Channel Selection Problem

Channel Selection Problem

State?

Restless Bandit Problems

P. WHITTLE (1988):

 $Restless\ Bandits:\ Activity\ Allocation\ in\ a\ Changing\ World.$

Partially Observable

Exploration vs Exploitation:

Should we collect new information or opt for the immediate payoff?

States and Belief States

State processes are assumed to be AR(1),

$$X_i(t) = \varphi X_i(t-1) + \varepsilon_i(t),$$

where $\varphi \in (0,1)$, and $\varepsilon_i(t) \sim_{\mathsf{i.i.d.}} \mathcal{N}(0,\sigma^2)$.

States and Belief States

State processes are assumed to be AR(1),

$$X_i(t) = \varphi X_i(t-1) + \varepsilon_i(t),$$

Structural Results

where $\varphi \in (0,1)$, and $\varepsilon_i(t) \sim_{\text{i.i.d.}} \mathcal{N}(0,\sigma^2)$.

Belief state of arm i at time t:

$$\mu_i(t) := \mathbb{E}\Big[X_i(t) \mid X_i(t - \eta_i(t)), \eta_i(t)\Big] = \varphi^{\eta_i(t)} X_i(t - \eta_i(t)),$$

$$\nu_i(t) := \operatorname{Var}\Big(X_i(t) \mid X_i(t - \eta_i(t)), \eta_i(t)\Big) = \sigma^2 \frac{1 - \varphi^{2\eta_i(t)}}{1 - \varphi^2},$$

where $\eta_i(t)$ is the number of time steps since arm i was last played.

Why is the Gaussian model special?

Why is the Gaussian model special?

• The belief states $(\mu_i(t), \nu_i(t))$ contain all relevant information available at time t.

Why is the Gaussian model special?

- The belief states $(\mu_i(t), \nu_i(t))$ contain all relevant information available at time t.
- $\mu_i(t)$: expected gain from exploiting an arm, $\nu_i(t)$: the need for exploring it.

Belief State Evolution

From $X_i(t) = \varphi X_i(t-1) + \varepsilon_i(t)$:

$$(\mu_i(t+1), \nu_i(t+1)) = \begin{cases} (\varphi \,\mu_i(t), \,\varphi^2 \,\nu_i(t) + \sigma^2), & a_i(t) = 0, \\ (\varphi \,\mathcal{N}(\mu_i(t), \,\nu_i(t)), \,\sigma^2), & a_i(t) = 1. \end{cases}$$

Belief State Evolution

From $X_i(t) = \varphi X_i(t-1) + \varepsilon_i(t)$:

$$(\mu_i(t+1), \nu_i(t+1)) = \begin{cases} (\varphi \, \mu_i(t), \, \varphi^2 \, \nu_i(t) + \sigma^2), & a_i(t) = 0, \\ (\varphi \, \mathcal{N}(\mu_i(t), \, \nu_i(t)), \, \sigma^2), & a_i(t) = 1. \end{cases}$$

⇒ Markov Decision Process

Chain of Actions

Index Policies

An index policy is of the form

$$\pi_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \underset{\boldsymbol{a}: \sum_{i=1}^{d} a_{i} = k}{\operatorname{arg max}} \left\{ \sum_{i=1}^{d} \gamma(\mu_{i}, \nu_{i}) a_{i} \right\}$$

The index function γ maps the belief state of each arm to some priority index.

Index Policies

An index policy is of the form

$$\pi_{\gamma}(\boldsymbol{\mu}, \boldsymbol{\nu}) = \underset{\boldsymbol{a}: \sum_{i=1}^{d} a_{i} = k}{\operatorname{arg max}} \left\{ \sum_{i=1}^{d} \gamma(\mu_{i}, \nu_{i}) a_{i} \right\}$$

The index function γ maps the belief state of each arm to some priority index.

Example: Myopic Policy with $\gamma^M(\mu, \nu) = \mu$.

Bandits for Channel Selection

2 Whittle Index: Structural Results

3 Parametric Index: Many-Arms Asymptotic Behaviour

Definition

$$\gamma^W(\mu,\nu) \ = \ \inf \left\{ \lambda \, | \, \pi^\lambda_{\mathsf{opt}}(\mu,\nu) = 0 \right\}$$

Here $\pi^{\lambda}_{\mathrm{opt}}$ is the optimal policy for a

one-armed bandit problem with subsidy,

where the decision maker observes and collects the reward when playing, and obtains a subsidy λ otherwise.

Optimality Equation

$$\begin{split} V^{\lambda}(\mu,\nu) &= \max \left\{ \, \lambda + \beta \, V^{\lambda}(\varphi \, \mu, \, \varphi^2 \nu + \sigma^2) \, , \right. \\ &\left. \mu + \beta \, \int_{-\infty}^{\infty} V^{\lambda}\left(\varphi \, y, \, \sigma^2\right) \phi_{\mu,\nu}(y) \, \mathrm{d}y \right\} \end{split}$$

Threshold Policy

The optimal policy for the one-armed bandit problem with subsidy is a *threshold policy*.

Switching curves: above the curve the optimal action is "play", below "do not play". $\beta=0.8,\,\varphi=0.9,\,\sigma=2.$

Monotonicity of the Whittle Index

The Whittle index $\gamma^W(\mu,\nu)$ is monotone non-decreasing in μ and ν , and generally not constant.

Whittle indices.

$$\beta = 0.8, \, \varphi = 0.9, \, \sigma = 2.$$

1 Bandits for Channel Selection

2 Whittle Index: Structural Results

3 Parametric Index: Many-Arms Asymptotic Behaviour

Parametric Index

$$\gamma(\mu,\nu) = \mu + \theta\nu$$
, where $\theta > 0$.

The correction term $\theta\nu$ allows to adjust the priority the decision maker wants to give to exploration.

• Consider the system under stationarity. Let $d \to \infty$ while $k_d/d \to \rho$.

- Consider the system under stationarity. Let $d \to \infty$ while $k_d/d \to \rho$.
- Note that the stochastic processes of indices are generally dependent.

- Consider the system under stationarity. Let $d \to \infty$ while $k_d/d \to \rho$.
- Note that the stochastic processes of indices are generally dependent.
- As we add more arms to the system, it approaches an equilibrium state in which the proportion of arms associated with a certain belief state remains fixed.

- Consider the system under stationarity. Let $d \to \infty$ while $k_d/d \to \rho$.
- Note that the stochastic processes of indices are generally dependent.
- As we add more arms to the system, it approaches an equilibrium state in which the proportion of arms associated with a certain belief state remains fixed.
- Thus, in the limit, the action chosen for a certain arm is independent of the current belief state of any other arm.

Conjecture: Many-Arms Behaviour

Assume that empirical distribution $M_h^d(x,0)$ converges weakly to non-random measure $m_h(B,0)$ for all $h \ge 0$,

$$M_h^d(B,0) \xrightarrow{w} m_h(B,0),$$

as $d \to \infty$ while $\lim_{d \to \infty} k_d/d = \rho$. Then, for all $t, h \ge 0$,

$$M_h^d(B,t) \xrightarrow{w} m_h(B,t).$$

State of System

 $f_h(x,t)$: Mass of arms played h+1 time units ago with conditional mean in [x,dx)

State of System

 $f_h(x,t)$: Mass of arms played h+1 time units ago with conditional mean in [x, dx)

State of the system at time t is described by

$$\{f_h(x,t), x \in \mathbb{R}, h = 0, 1, 2, \ldots\},\$$

where

$$\int_{-\infty}^{\infty} \sum_{h=0}^{\infty} f_h(x,t) \, dx = 1.$$

Threshold Process

$$\ell_h^*(t) := \ell^*(t) - heta
u^{(h)}(t)$$
 such that

$$\int_{\ell_h^*(t)}^{\infty} \sum_{h=0}^{\infty} f_h(x,t) \, dx = \rho$$

defines the proportion of ρ "best" arms as determined by the parametric policy.

Many-Arms Asymptotic Behaviour

$$f_h(x,t) = \begin{cases} \frac{1}{\varphi} f_{h-1} \left(\frac{x}{\varphi}, t - 1 \right) \mathbb{1} \left\{ x \le \varphi \, \ell_h^*(t-1) \right\}, & h \ge 1, \\ \\ \frac{1}{\varphi} \sum_{h=0}^{\infty} \int_{\ell_h^*(t-1)}^{\infty} \phi_{z,\nu_h} \left(\frac{x}{\varphi} \right) f_h(z,t-1) \, dz, & h = 0. \end{cases}$$

Many-Arms Asymptotic Behaviour

$$f_h(x,t) = \begin{cases} \frac{1}{\varphi} f_{h-1} \left(\frac{x}{\varphi}, t - 1 \right) \mathbb{1} \left\{ x \le \varphi \, \ell_h^*(t-1) \right\}, & h \ge 1, \\ \\ \frac{1}{\varphi} \sum_{h=0}^{\infty} \int_{\ell_h^*(t-1)}^{\infty} \phi_{z,\nu_h} \left(\frac{x}{\varphi} \right) f_h(z, t-1) \, dz, & h = 0. \end{cases}$$

Motivated by evolution of belief states:

$$(\mu_{i}(t+1), \nu_{i}(t+1)) = \begin{cases} (\varphi \mu_{i}(t), \varphi^{2} \nu_{i}(t) + \sigma^{2}), & a_{i}(t) = 0, \\ (\varphi Y_{\mu_{i}(t), \nu_{i}(t)}, \sigma^{2}), & a_{i}(t) = 1. \end{cases}$$

Many-Arms Asymptotic Behaviour

$$f_h(x,t) = \begin{cases} \frac{1}{\varphi} f_{h-1} \left(\frac{x}{\varphi}, t - 1 \right) \mathbb{1} \left\{ x \le \varphi \, \ell_h^*(t-1) \right\}, & h \ge 1, \\ \\ \frac{1}{\varphi} \sum_{h=0}^{\infty} \int_{\ell_h^*(t-1)}^{\infty} \phi_{z,\nu_h} \left(\frac{x}{\varphi} \right) f_h(z,t-1) \, dz, & h = 0. \end{cases}$$

Motivated by evolution of belief states:

$$(\mu_{i}(t+1), \nu_{i}(t+1)) = \begin{cases} (\varphi \mu_{i}(t), \varphi^{2} \nu_{i}(t) + \sigma^{2}), & a_{i}(t) = 0, \\ (\varphi Y_{\mu_{i}(t), \nu_{i}(t)}, \sigma^{2}), & a_{i}(t) = 1. \end{cases}$$

Conjecture: Equilibrium State

measure-valued dynamical system at equilibrium

 \sim

one-armed process: active whenever index exceeds ℓ^*

Comparison of average rewards achieved per arm. θ is found by optimizing (i) the problem with d arms (θ_d^*), and (ii) the one-armed problem (θ^*). $\varphi = 0.9$, $\sigma = 2$, $\rho = 0.4$, $T = 10^5$.

Some References

- K. AVRACHENKOV, L. COTTATELLUCCI, and L. MAGGI (2012). Slow Fading Channel Selection: A Restless Multi-armed Bandit Formulation. *ISWCS*, pp. 1083–1087.
- 2. J. GITTINS, K. GLAZEBROOK and R. WEBER (2011). *Multi-armed Bandit Allocation Indices*, 2nd Ed., John Wiley & Sons.
- 3. K. Liu and Q. Zhao (2010). Indexability of Restless Bandit Problems and Optimality of Whittle Index for Dynamic Multichannel Access. *IEEE Trans. Inf. Theory*, 56, pp. 5547–5567
- 4. R. Weber and G. Weiss (1990). On an Index Policy for Restless Bandits. *J. Appl. Probab.*, 27, pp. 37–648.
- 5. P. WHITTLE (1988). Restless Bandits: Activity Allocation in a Changing World. *J. Appl. Probab.*, 25, pp. 287–298.

Thank you!

