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i. Model and Framework

A dynamic decision problem under uncertainty:
We select k out of d restless reward observing
one-armed bandits to play on, such as to max-
imize the expected total discounted or average
reward. Rewards are collected and states are
observed ONLY if an arm is played.
Should we collect new information or
opt for the immediate payoff?
State processes are Gaussian AR(1),

Xi(t) = ϕXi(t− 1) + εi(t),

where ϕ ∈ (0, 1) and εi ∼ i.i.d. N (0, σ2). An
application is channel selection in wireless net-
works.

Why is the Gaussian model so special?

•The belief states
(
µi(t), νi(t)

)
, i.e. the means and variances conditioned

on the available information, contain all relevant information available at
time t.

•At the same time, µi(t) and νi(t) quantify the expected gain from ex-
ploiting an arm vs. the need for exploring it.

Updating the Belief States
A policy π maps the information available to actions ai(t) = 1 (“play”) or
ai = 0 (“do not play”), such that in total k out of d are played at every time
t. With Yµ,ν ∼ N (µ, ν),

(
µi(t + 1), νi(t + 1)

)
=

{(
ϕµi(t), ϕ

2 νi(t) + σ2
)
, ai(t) = 0,(

ϕYµi(t), νi(t) , σ
2
)
, ai(t) = 1.

Chain of Actions

(µ,ν) a

∑d
i=1Xi ai

π

observe state,
collect reward

update belief
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ii. Index Policies

An index policy is of the form

πγ(µ,ν) = arg max
a:
∑d

i=1 ai=k

{
d∑
i=1

γ (µi, νi) ai

}

The index function γ maps the belief state of each arm to
some priority index.

Myopic γM (µ, ν) = µ

Parametric γθ(µ, ν) = µ + θν, θ > 0

Whittle γW (µ, ν) = inf
{
λ | πopt(µ, ν) = 0

}
Here πopt is the optimal policy for a one-armed bandit prob-
lem with subsidy, where the decision maker observes and
collects the reward when playing, and obtains a subsidy λ
otherwise.

iii. Whittle Index: Structural Results

The Whittle index policy has been found to be asymptotically optimal in many cases (although no such result is known
for our model) but no closed-form expression is known. The associated optimal value function can in principle be found
using dynamic programming techniques. We can further prove the following.

The optimal policy for the one-armed bandit problem
with subsidy is a threshold policy.
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Switching curves: above the curve the optimal
action is “play”, below “do not play”.

β = 0.8, ϕ = 0.9, σ = 2.

The Whittle index γW (µ, ν) is monotone non-
decreasing in µ and ν, and generally not constant.
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Difference of Whittle and myopic index:
γW (µ, ν)− µ.

β = 0.8, ϕ = 0.9, σ = 2.

iv. Parametric Index: Many-Arms Asymptotic Behaviour

1. Intuitively, as d → ∞, kd/d → ρ, in the long-run the
system approaches an equilibrium at which the proportion of
arms associated with a certain belief state remains fixed. Then
the action chosen for a certain arm is independent of the cur-
rent belief state of any other arm, as there is always the same
proportion of arms associated with a certain belief state in the
system.

2. We explicitly identify a measure-valued recursion that de-
scribes the many-arms behaviour of the system at equilibrium.
Namely, the limiting proportion of arms that have been ob-
served h time steps ago and whose conditional mean falls in
(−∞, x] can be modeled as

mh

(
x, t + 1

)
=


∑∞

h=0

∫∞
`∗h(t)

Φz, ν(h)

(
x
ϕ

)
mh(dz, t), h = 0,

mh−1

(
min

{
x
ϕ, `

∗
h−1(t)

}
, t
)
, h ≥ 1,

where `∗h(t) := `∗(t)− θν(h)(t) with `∗(t) defined by

`∗(t) = sup

{
`
∣∣∣ ∞∑
h=0

mh

({
µ |µ + θν(h) ∈ [`,∞)

}
, t
)

= ρ

}
.

Thus, `∗h(t) is a threshold such that at time t the parametric
policy activates all arms that are of age h and have conditional
mean µ(t) ≥ `∗h(t).

3. Based on 1. and 2. we conjec-
ture that the measure-valued dynam-
ical system at equilibrium is directly
related to a one-armed process where
the arm is activated whenever the in-
dex exceeds a particular threshold `,
namely ` = `∗.

Algorithm for Performance
Evaluation

1. For large T determine ` such that
T−1

∑T
t=0 ai(t) = ρ is achieved for

a parametric index policy applied
to the one-armed process.

2. Use the sample path of Step 1 to
obtain an estimate G for the ex-
pected average reward of the one-
armed system.

3. Output Gd := d G as an approx-
imation of the expected average
reward of the multiarmed system
with d arms.
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Expected average reward G(θ) computed by the algorithm as a function
of θ. σ = 2, ϕ ∈ {0.9, 0.925, 0.95, 0.975}, ρ = 0.4, T = 2× 106.
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Comparison of average rewards achieved per arm. θ is found by
optimizing (i) the problem with d arms (θ∗d), and (ii) the one-armed

problem (θ∗). ϕ = 0.9, σ = 2, ρ = 0.4, T = 105.

Motivated by the many-arms
asymptotic behaviour of the
system.


