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I. Model and Framework II. Index Policies I1I. Whittle Index: Structural Results

A dynamic decision problem under uncertainty: An index policy is of the form The Whittle index policy has been found to be asymptotically optimal in many cases (although no such result is known

We select k out of d restless reward observing for our model) but no closed-form expression is known. The associated optimal value function can in principle be found

. (d ) : : : : :
one-armed bandits to play on, such as to max- using dynamic programming techniques. We can further prove the following.
- . > 7 (i, v4) a
imize the expected total discounted or average

reward. Rewards are collected and states are el The optimal policy for the one-armed bandit problern e ’YW(M’ e e
observed ONLY if an arm is played. , ;;;5’ The index function v maps the belief state of each arm to with subsidy is a threshold policy. decreasing in p and v, and generally not constant.
Should we collect new information or S A some priority e 1 I I dreten 4 .

opt for the immediate payoff? T =

State processes are Gaussian AR(1), e YW [7

T (e, V) = arg max X
a) i =k \ i=1 )
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Myopic ™ (u,v) = p

Xi(t) = X;(t — 1)+ &(t), \ Parametric A7 (u,v) =p+60v, 6>0
where ¢ € (0,1) and g; ~ 1.i.d. M(0,0%). An Whittle 9" (i, v) = inf {A | wope(ps, v) = 0}

application is channel selection in wireless net-
works. Here ¢ 15 the optimal policy for a one-armed bandit prob-

lem with subsidy, where the decision maker observes and
collects the reward when playing, and obtains a subsidy A
otherwise. | - 210s

v vV

o The belief states (p;(t), vi(t)), Le. the means and variances conditioned stmead T L . . . .
on the available information, contain all relevant information available at . Ni et- g he many_?rtrﬁs Sw1tch11qg e above the curve the optimal Difference of Viittle and myopic index
ASyIpLotie belaviout ot the action is “play”, below “do not play”. YW, v) — .

time t. tem.
S 5=08, =09, 0=2 6 =08, ¢=09,0=2.

M

m

T TN
L

"

m

| L

T

1111t M |

i

l

Why is the GGaussian model so special?
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e At the same time, u;(t) and v;(t) quantify the expected gain from ex-
ploiting an arm vs. the need for exploring it.

Updating the Belief States
A policy m maps the information available to actions a;(t) = 1 (“play”) or

a; = 0 (“do not play”), such that in total k£ out of d are played at every time
t. With Y, , ~ N(u,v),

1. Intuitively, as d — o0, kg/d — p, in the long-run the 3. DBased on 1. and 2. we conjec-
system approaches an equilibrium at which the proportion of ture that the measure-valued dynam-
arms associated with a certain belief state remains fixed. Then ical system at equilibrium is directly

( 1wt 4+ 1), vi(t + 1)) _ { the action chosen for a certain arm is independent of the cur- related to a one-armed process where

rent belief state of any other arm, as there is always the same the arm is activated whenever the in-
proportion of arms associated with a certain belief state in the dex exceeds a particular threshold ¢,
system. namely ¢ = (*.

Chain of Actions

| . 02 03 0.4 0.5
T a ) 2. We explicitly identify a measure-valued recursion that de- p

> Algorithm for Performance — . .
scribes the many-arms behaviour of the system at equilibrium. 5 Evaluation Expected average reward G(6) computed by the algorithm as a function

v D

/

| \ opserve state, Namely, the limiting proportion of arms that have been ob- of . 0 =2, p € {0.9, 0.925, 0.95, 0.975}, p=04 1T =2x 109,
clie
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update b

collect reward served h time steps ago and whose conditional mean falls in .For large T' determine £ such that

(—00, x| can be modeled as T-'S°7 ai(t) = p is achieved for
S Xia, N a parametric index policy applied
> o, fé;;(t) 0 (%) my(dz,t), h to the one-armed process.

mh—1(min [z 05 ()}, t), 2. Use .the samp.le path of Step 1 to
’ obtain an estimate GG for the ex-

where 05 () := £*(t) — Ov\")(¢) with £*(¢) defined by pected average reward of the one-
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