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Abstract—We consider a network of data streams
from which an anomalous process with known target
distribution is to be identified. Motivated by the real-
isation that in practice obtaining observations may be
expensive, we assume that there is a constraint on the
total number of observations based on which the decision
has to be made. We derive a sufficient condition on the
sampling budget such that the error probability is kept
below some desired level. Furthermore, we show how to
obtain a sampling allocation that can improve upon equal
sampling allocation and achieves the desired accuracy.

I. INTRODUCTION

Consider a network of d processes which are to be
monitored with the objective to identify the anoma-
lous process, that is, the process that stems from a
given target distribution G rather than the reference
distribution F . We may, for example, be interested in
identifying an idle channel in a network of communi-
cation channels [1], the presence of a certain animal
species in one of a number of monitored habitats, the
drug that is efficient in curing a certain disease, and
many other possible applications.

It is known that if only a single process is to be
monitored and the problem is to decide as quickly
as possible whether or not it stems from a target
distribution subject to a constraint on the error prob-
ability, Wald’s sequential probability ratio test (SPRT)
is optimal [2]. In such a sequential setting, target
identification in networks of multiple processes has
been considered in [3], [4] under the assumption that
all processes are observed at every time point.

In practice, it may often be the case that obtaining an
observation is expensive. For example, in decentralized
sensor networks there is usually a cost associated with
the communication between sensors and the fusion
center [5]. In many other application areas, such as
biology, physics, medicine, psychology, geology, and
ecology, observations can often only be obtained from
experiments that involve human intervention, in which
case an observation is particularly costly. In medical
applications it often occurs that only a limited number
of samples are available, e.g. for diagnostic testing or

for testing the effectiveness of a certain medication.
Such considerations motivate the investigation of how
an anomalous process or target can be identified effi-
ciently based on only a limited number of observations.

In a sequential setting, where one samples until the
test statistic exceeds a certain threshold, [5] inves-
tigated the question of efficient sampling allocation
in the context of change point detection, where the
anomaly is not present initially but may appear at some
unknown time point. In [6] a sequential procedure
for sampling allocation was proposed subject to the
constraint that only a number k < d of all data streams
can be observed at every time point. In contrast, in this
paper we do not consider a sequential testing problem
but instead assume that the decision has to be made as
accurately as possible with a given sampling budget.

It seems plausible that a good sampling allocation
should explicitly take into account the specific charac-
teristics of each process. For example, processes with
a high variance should be sampled more often; and
more samples should be taken from processes that
are more similar to the anomalous process. Motivated
by such considerations we are interested in determin-
ing an allocation ρ := (ρ1, . . . , ρd) ∈ (0, 1)d with∑d
i=1 ρi = 1 such that the decision can be made with

the desired accuracy based on ρin samples from pro-
cess i ∈ {1, . . . , d}. (We neglect the minor technical
issues arising when ρin is not integer-valued.)

We assume no prior knowledge as to which of
the data streams in the network is anomalous (as
opposed to a Bayesian setting where one has a prior
belief about the characteristics of the data streams).
In this framework, initially all processes have to be
observed for a certain amount of time so as to collect
information about their nature. We therefore first derive
a bound on the number of samples needed to obtain
the desired minimal security about which process is
the anomalous one. Then, in a second step, we show
how the remaining sampling budget can be allocated
so as to optimize the accuracy of the identification.

As is common in the literature on anomaly iden-



tification [3], [4] we assume that we know which
behaviour should be characterised as anomalous and
which behaviour is normal, meaning we know the
distribution of the data streams in both cases. This is
a reasonable assumption for example for the problem
of searching the idle channel in a communication
network [6].

The methodology we use is motivated by the work
of [7], [8] on ordinal optimization. They consider the
problem of finding the process with the largest sample
mean from a given set of independent and identically
distributed (i.i.d.) observations, subject to a constraint
on the available sampling budget.

The paper is organized as follows. In Section II
we explain the problem and propose an algorithm
for sampling allocation and target identification that
provably does better than a pre-specified accuracy.
In Sections III and IV we explain how the steps of
the algorithms can be carried out. We conclude in
Section V.

II. PROBLEM FORMULATION AND
SAMPLING ALGORITHM

Denote the observation of process i at time n by
Xi(n). We assume that the sequences

(
Xi(n)

)
n

and(
Xj(n)

)
n

are independent for i 6= j. Unless otherwise
stated, the observations need not be independent over
time. Without loss of generality, we assume that the
anomalous process is the process labelled by 1. Sup-
pose that X2(n), . . . , Xd(n) have a distribution with
density f , while X1(n) has a distribution with density
g. Motivated by log-likelihood ratio (LLR) hypothesis
testing, we declare process i to be anomalous based on
a total of N observations sampled according to ρ if

Li(Nρi) :=
1

Nρi

Nρi∑
n=1

`i(n) ≥ Lj(Nρj) ,

with i, j ∈ {1, . . . , d}, where

`i(n) := log
g
(
xi(n)

∣∣xi(1), . . . , xi(n− 1)
)

f
(
xi(n)

∣∣xi(1), . . . , xi(n− 1)
)

denote the LLR increments. We assume that
E
[
`1(1)

]
> E

[
`j(1)

]
, j ∈ {2, . . . , d}, so that the

anomalous process is indeed distinguishable. This as-
sumption was also imposed in [7].

Suppose the total sampling budget is N . Then,
since at the beginning of the testing it is not known
which process is from the target distribution, the naive
approach is to allocate an equal number of samples to
each process. Later we will see, however, that we can
easily improve upon this simple approach.

The event of a false selection (FS), i.e. of declar-
ing the wrong process to be anomalous, based on n
samples is given by

FS(n,ρ) :=

{
L1(nρ1) < max

i∈{2,...,d}
Li(nρi)

}
.

We propose the following “algorithm” for determining
the sampling allocation ρ such that FS(N,ρ) is small
and guaranteed to be below a chosen level α.
(A) Fix α. Observe all processes until time

min{sn/d,N/d}, where sn is such that
P(FS(sn,ρd)) ≤ α for ρd := (1/d, . . . , 1/d).

(B) If sn ≤ N , distribute the remaining sampling
budget according to the allocation ρ∗ that solves

min
ρ

P
(
FS(N,ρ)

)
s. t.

d∑
i=1

ρi = 1 , ρiN ≥ ρisn ∀ i .
(1)

Provided that the LLR increments satisfy the con-
ditions of the law of large numbers, it is clear that sn
from Step (A) of the algorithm indeed exists. If the
false selection probability decreases monotonically in
n for all n ≥ sn, then the false selection probability
achieved using the above algorithm based on N sam-
ples is guaranteed to be below α. This motivates that
we investigate the monotonicity of the false selection
probability in the remainder of this section.

If P
(
FS(n,ρ)

)
is not everywhere decreasing in n,

we can still ensure that P
(
FS(N,ρ)

)
≤ α by deriving

sn in Step (A) from an upper bound on the false
selection probability that does decrease monotonically
in n; we provide such a bound in Section III.

In the remainder of this section we focus on the case
of i.i.d. observations. Denote the mean and variance
of `i(1) by µi and σ2

i , respectively. We introduce the
random process

Zj(n) := L1(nρ1)−Lj(nρj) , j ∈ {2, . . . , d} .

Then the false selection probability is everywhere
monotonically decreasing in n if

P
(
Zj(n+ 1) ≤ 0

)
≤ P

(
Zj(n) ≤ 0

)
(2)

holds for all n ∈ N, j ∈ {2, . . . , d}. The mean of
Zj(n) is aj := µ1 − µj > 0 and the variance is
n−1v2

j (ρ), where v2
j (ρ) := σ2

1/ρ1 +σ2
j /ρj . We further

define v2
j := σ2

1 + σ2
j .

We can check that (2) holds for all n ∈ N in the case
of Gaussian random variables (Lemma 1). The distri-
bution function of the standard normal distribution is
denoted by Φ.

Lemma 1. For each i assume that Xi(n) are i.i.d.
Gaussian random variables. Then the false selection
probability decreases monotonically as a function of n.

Proof: By assumption the processes Zj(n) are
Gaussian as a convolution of independent Gaussian
random variables. Then (2) is equivalent to

Φ

(
−
√
naj

vj(ρ)

)
≥ Φ

(
−
√
n+ 1aj
vj(ρ)

)
,

which clearly holds for any n ∈ N since aj > 0.
In general, the false selection probability need not be

decreasing. We can show, however, that P(Zj(n) ≤ 0)



lies within an interval the center of which is decreasing
in n, and with bounds that become increasingly tight
as n grows.

To this end, note that Zj(n) is a sample mean of n
independent random variables

Yj(t) :=
`1(t)

ρ1
1{t ≤ nρ1} −

`j(t)

ρj
1{t ≤ nρj} ,

with mean aj(t) > 0 and variance vj(t)
2. Then

the following lemma readily follows from the Berry-
Esséen theorem [9].

Lemma 2. Let Xi(t) be i.i.d. random variables such
that aj(t) > 0, v2

j (t) <∞ for t ∈ N, and

sup
t∈N

E
[
|Yj(t)− aj(t)|3

]
< B ,

for some B <∞. Then P (Zj(n) ≤ 0) is bounded by

Φ

(
−
√
n
aj
vj

)
± 3B

5v3
j

√
n
. (3)

The condition on the absolute third moment is very
mild; for example, for i.i.d. Gaussian observations the
absolute third moments are bounded by 2v3

j

√
2/π.

In Sections III and IV we discuss how to carry out
Steps (A) and (B) of the algorithm, respectively.

III. SUFFICIENT SAMPLING BUDGET

In this section, for a given allocation ρ we derive a
bound on the total number of observations that ensures
that the false selection probability is kept below a
desired level α. That is, we want to determine nρ such
that

P
(
FS(nρ,ρ)

)
≤ α .

(Such an nρ exists because we assumed that µ1 > µj
for j ∈ {2, . . . , d}.)

In special cases, it may possible to compute the false
selection probability explicitly by inducing indepen-
dence via conditioning on the value of L1(nρ1) (we
leave this for future research). In general, however,
it is difficult to evaluate P

(
FS(n,ρ)

)
, and therefore

we now show how it can be approximated using large
deviations (LD) arguments when the given sampling
budget n is large.

Let
Ii(x) := sup

θ∈R
{θx− Λi(θ)}

denote the Fenchel-Legendre transformation of the
limiting cumulant generating function Λi of the LLR
of process i,

Λi(θ) := lim
n→∞

1

n
log E

[
eθLi(n)

]
.

Assume that Λi(·) is everywhere differentiable and
exists as a finite number for every θ ∈ R.

Proposition 1. The false selection probability can be
approximated as

lim
n→∞

1

n
log P

(
FS(n,ρ)

)
= − min

j∈{2,...,d}
Gj(ρ) , (4)

where

Gj(ρ) := inf
x
{ρ1I1(x) + ρjIj(x)} . (5)

Proof: Using that limn→∞ n−1 log(d − 1) = 0,
similar to [10, Lemma 1.2.15] it is readily obtained
that

lim
n→∞

1

n
log P

(
FS(n,ρ)

)
=

max
j∈{2,...,d}

lim
n→∞

1

n
log P (Lj(nρj) > L1(nρ1)) .

(6)
From the Gärtner-Ellis theorem [10], we have that for
x > E`i(1),

lim
n→∞

1

n
log P

(
Li(nρi) > x

)
= −ρiIi(x) .

Let Ij(x) := ρ1I1(x1) + ρjIj(xj). Because Lj and
L1 are independent, it follows that for B ⊂ R2 such
that infx∈Bo Ii(x) = infx∈ sB Ii(x) =: Ii(B) we have

lim
n→∞

1

n
log P

((
L1(nρ1),Lj(nρj)

)′ ∈ B) = −Ij(B) .

Using the properties of the rate functions Ii, we can
then argue as in [7, Section 2.2] that

lim
n→∞

1

n
log P (Lj(nρj) > L1(nρ1)) = −Gj(ρ) .

This, together with (6) proves (4).
Let DΛi

:= {θ ∈ R : Λi(θ) < ∞} and Fi :=
{Λ′i(θ) : θ ∈ DΛo

i
}, where Ao denotes the interior of

set A. It is well known [10] that the Fenchel-Legendre
transform is strictly convex and C∞ for x ∈ Foi ,
Ii(µi) = 0 and Ii(x) ≥ 0 for all x ∈ R.

The following lemma can be proven analogously to
[7, Lemma 3]. Loosely speaking, assumption (7) of
the lemma states that the LLRs can take any value
in the interval [µd, µ1]; in particular, it implies that
P
(
Zj(nρj) ≤ 0

)
> 0. It holds for example if the

distribution of `i(t) stems from the Normal or the
Gamma family.

Lemma 3 (Glynn and Juneja [7]). Assume that all
observations are i.i.d., and that

[µd, µ1] ⊂
d⋂
i=1

Foi . (7)

Then for a given allocation ρ and sampling budget n
we have

P
(
FS(n,ρ)

)
≤ (d− 1) exp

(
−n min

j∈{2,...,d}
Gj(ρ)

)
.

(8)

Thus, a lower bound for the minimal value of n can
be achieved by putting the upper bound given in (8)
equal to α, and solve for n. Note that this will yield a
function of n that depends on the allocation ρ.

In Step (A) of the algorithm proposed in the previous
section we assume ρi = 1/d for all i. We provide an
example below.



a) Example: Suppose the observations of each
stream are i.i.d. and normally distributed with Xi(t) ∼
N (mi, s

2) for i ∈ {1, . . . , d}, where m1 = m̃,
whereas mj = m for j ∈ {2, . . . , d}. It is easy to
see that the LLR increments are

`i(t) =
m̃−m
s2

(
Xi(t)−

m+ m̃

2

)
,

and hence `i(t) ∼ N
(
µi, σ

2
)
, where

µi :=
m̃−m
s2

(
mi −

m+ m̃

2

)
, σ :=

m̃−m
s

.

Then the LLRs at time n have distribution Li(ρin) ∼
N
(
µi, σ

2/(ρin)
)
. The cumulant generating function is

Λi(θ) = θ µi +
1

2
σ2 θ2 ,

so that

Ii(x) =
(x− µi)2

2σ2
.

Therefore, we obtain that

Gi(ρ) =
(µi − µ1)2

2σ2(1/ρ1 + 1/ρj)
.

Consider the allocation ρ = (1/d, . . . , 1/d). From (8)
we know that if n satisfies

α = (d− 1) exp (−nGj(ρ))

for arbitrary j ∈ {2, . . . , d}, then P
(
FS(n,ρ)

)
≤ α.

Solving for n we obtain that under allocation ρ we
can make a decision with the desired accuracy if

n ≥ sn :=
2σ2 (1/ρ1 + 1/ρj)

(µj − µ1)2
log

(
d− 1

α

)
.

Fig. 1 shows the values of sn obtained with equal
allocation. Naturally, the value of sn decreases as the
difference between the anomalous process and the
other processes increases. The achieved false selection
probabilities are very conservative. The jumps are due
to the rounding of sn/d.

1 2 3 4 5
0

50

100

m1

sn

1 2 3 4 5
0

2

4
·10−2

P
( FS

(sn
,ρ

d
))

Figure 1. We plot the obtained values of sn as a function of
m1 = EX1(t) for a network with 4 processes under equal allocation
(solid line). Other parameters are set as mj = 0 for j = 2, 3, 4,
s = 1, α = 0.01. The dotted line shows the simulated values of
P
(
FS(sn,ρd)

)
, with values on the right vertical axis.

IV. ASYMPTOTICALLY OPTIMAL ALLOCATION

An asymptotically optimal allocation ρ∗ that (ap-
proximately) solves (1) if N is large can be found by
minimizing the rate function given in (4). Note that the
rate function is concave in ρ as a minimum over affine
functions. We can formulate the optimization problem
as follows:

max z s. t.
Gj(ρ)− z ≥ 0
d∑
i=1

ρi − 1 = 0 (9)

ρiN − sn/d ≥ 0 . (10)

From the Karush-Kuhn-Tucker conditions [11] we
know that there exists multipliers µj , ηi and λ such
that

d∑
j=2

µj
∂Gj(ρ

∗)

∂ρ1
+ η1N = λ (11)

µj
∂Gj(ρ

∗)

∂ρj
+ ηjN = λ , j ∈ {2, . . . , d} (12)

1−
d∑
j=2

µj = 0 (13)

µj
(
z −Gj(ρ∗)

)
= 0 , j ∈ {2, . . . , d} (14)

ηi (sn/d− ρ∗iN) = 0 , i ∈ {1, . . . , d} . (15)

This yields conditions on the asymptotically optimal
allocation, which we formalize in the following propo-
sition.

Proposition 2. Let N > sn. If an allocation ρ∗

with
∑d
i=1 ρ

∗
i = 1 and ρ∗i ≥ sn/(dN)∀ i minimizes

P
(
FS(N,ρ)

)
, then

Gj(ρ
∗) = Gk(ρ∗) (16)

for k, j ∈ {2, . . . , d} such that ρ∗k, ρ
∗
j 6= sn/(dN). If

ρ∗i 6= sn/(dN)∀ i, we also have

d∑
j=2

∂Gj(ρ
∗)/∂ρ1

∂Gj(ρ∗)/∂ρj
= 1 . (17)

Proof. From (13) we have that there exists j ∈
{2, . . . , d} such that µj > 0. Because ∂Gj(ρ∗)/∂ρj >
0, together with (12) this implies that that λ > 0.This
means that for j ≥ 2, if ηj = 0, then µj > 0, in which
case by (14) we have (16). By (15), ηj = 0 holds if
ρ∗j 6= sn/(dN).

The latter also implies that if ρ∗j 6= sn/(dN) for all i,
then ηi = 0 for all i, in which case (12) implies that
µj = λ/

[
∂Gj(ρ

∗)/∂ρj
]
. Substituting this into (11)

then gives (17).

Note that since we assumed that the processes
2, . . . , d are stochastically identical, (16) implies that
ρ2 = · · · = ρd =: ρ̃ (as one would expect). If (16)
and (17) yield a feasible solution (i.e. an allocation



that satisfies (9) and (10)), then this solution is opti-
mal because the optimization problem is concave and
thus the Karush-Kuhn-Tucker conditions are sufficient.
Hence, in this case we assign ρ∗1N samples to the
process that had the largest LLR after Step (A) of
the algorithm, and ρ∗j samples to all others. Otherwise,
the optimal solution is ρ∗i = sn/(dN) for all i except
the process that yielded the largest LLR with the
first sn/(dN) observations, which then has allocation
1− (d− 1)sn/(dN).

b) Example: We assume that the observations
are i.i.d. Gaussian so that the LLR increments have
distribution N

(
µi, σ

2
i

)
, where processes 2, . . . , d are

assumed to be stochastically identical. We compute the
allocation ρ∗ obtained based on LD approximations as
suggested above. For illustration purposes, we assume
that sn = 0. Note that ρ∗i > 0 because otherwise
miniGi(ρ

∗) = 0 while we know that Gi(ρd) > 0
for every i. As in Example 1 in [7] we obtain from
(16) and (17) that ρ∗ satisfies the conditions

ρ∗1 = σ1

√√√√ d∑
j=2

ρ∗j
2

σ2
j

,

d∑
i=1

ρi = 1 ,

and

(µj − µ1)2

(
σ2

1

ρ∗1
+
σ2
k

ρ∗k

)
= (µk − µ1)2

(
σ2

1

ρ∗1
+
σ2
j

ρ∗j

)
for j, k ∈ {2, . . . , d}. Thus, the asymptotically optimal
allocation ρ∗ can be obtained by solving the resulting
system of equations.

Since we assume that processes j ∈ {2, . . . , d} are
identically distributed, we readily obtain

ρj =
σj

σ
√
d− 1 + σj(d− 1)

, j ∈ {2, . . . , d}

ρ1 =
σ1

σj

√
d− 1 ρj .

Note that the budget allocated to the anomalous process
increases as σ1 increases.

We now compare the false selection probabilities
obtained numerically under ρ∗ with those achieved
under equal allocation, see Fig. 2. Naturally, the false
selection probabilities overall decrease as m1 and thus
the difference between the means of the processes
increases. We further note that P

(
FS(10,ρd)

)
is gener-

ally greater than P
(
FS(10,ρ∗)

)
; the performance gain

is more than 10%.

V. CONCLUSION

We proposed an algorithm for identifying a target
process in a network of independent data streams sub-
ject to a constraint on the total number of observations.
We showed that the probability of false selection can
be decreased substantially compared to equal allocation
of samples.

Future research should investigate the impact of
the specific characteristics of each process on the
optimal allocation. It should also generalize the results

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

m1

P
( FS

(1
0
,ρ

))

1 2 3 4
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1.11

1.11

1.12

1.12

1.13

P
( FS

(1
0
,ρ

d
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P
( FS

(1
0
,ρ

∗
))

Figure 2. False selection probabilities achieved under equal alloca-
tion ρd (solid line) and under asymptotically optimal allocation ρ∗

(dashed line) as a function of m1 := EXi(t) for a network with 4
processes under equal allocation. Their ratio is also depicted (dotted
line, values on the right vertical axis). Other parameters are set as
mj = 0 for j = 2, 3, 4, s = 2, N = 10.

we provided: For example, the assumption of i.i.d.
observations that we imposed in some places can
certainly be relaxed. Also, our work can be extended
to the setting where an unknown number of anomalous
processes is present, in which case a process is declared
anomalous when the LLR test statistic exceeds an
appropriately specified threshold.
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