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Abstract. This paper devises new hypothesis tests for detecting changes
in the scale of interdependent and serially correlated data streams, i.e, pro-
portional changes of the mean and (co-)variance. Such procedures are of
great importance in various networking contexts, since they enable auto-
matic detection of changes, e.g. in the network load. Assuming the under-
lying structure is Gaussian, we compute the log-likelihood ratio test statis-
tic, either as a function of the observations themselves or as a function of
the innovations (i.e., a sequence of i.i.d. Gaussians, to be extracted from
the observations). An alarm is raised if the test statistic exceeds a certain
threshold. Based on large deviations techniques, we demonstrate how the
threshold is chosen such that the ratio of false alarms is kept at a pre-
defined (low) level. Numerical experiments validate the procedure, and
demonstrate the merits of a multidimensional detection approach (over
multiple one-dimensional tests). Also a detailed comparison between the
observations-based approach and the innovations-based approach is pro-
vided.

1 Introduction

Statistical change point detection is an important tool in network control, and
has been widely applied in e.g. intrusion detection systems, [17,18,19], and
overload detection [13]. In order to enable the network operator to adequately
respond to persistent changes in the (inherently random) observations, the main
task is to detect persistent changes as quickly as possible while keeping the
number of false alarms at a predefined low level (for instance 5%).

Traditionally, in the change point detection literature the main focus has
been on detecting a change in the mean value corresponding to a sequence of
independent, one-dimensional observations [4,8,16]. However, in many situations
this setting is far from adequate. In the first place, in practice there is typically
positive correlation between subsequent data points [20]. Moreover, single data
points often consist of multidimensional records, rather than one-dimensional
values. In addition, in the context of communication networks, an increase in
the number of active users tends to be not reflected by a change in the mean
only, but rather as a change in scale – a change in both the mean and (propor-
tionally) the corresponding variance. Therefore, to only focus on the detection



of mean shifts neglects an additional indicator that a change has taken place [2,
Ex. 4.1.9].

Motivated by the above considerations, a number of procedures have been
proposed that allow for data streams to be either serially correlated [15] or mul-
tidimensional [8]. In [19] a detection method for testing serially correlated and
multidimensional data streams is presented but the multiple data streams are
assumed to be independent. The more general setting of dependent multidi-
mensional data streams is covered in [2], where testing against a change in
mean or variance is considered separately. In the current paper, we develop
techniques different from those of [2] for the detection of changes in scale in
multidimensional and serially correlated sequences, which allow the network
operator to limit the false alarm rate to a level of her choice. We focus on Gaus-
sian sequences (Xt)t∈Z, where sets of observations have a multivariate Normal
distribution. Gaussian time series are popular for modeling network traffic, see
e.g. [1] and [12, Part A].

Let us consider the illustrative example of a link of a communication net-
work. If the bandwidth consumed by different users is i.i.d., then the mean
and variance of the total bandwidth consumption are both proportional to the
number of users. As a consequence, a change in the number of users can be
considered as a change of scale, in the sense defined above: the mean and vari-
ance exhibit the same relative (i.e., percentage-wise) change. When measuring
not only at a single link but at various points in the network, then more infor-
mation is available, potentially facilitating earlier detection or a lower risk of
false alarms. In this case – apart from serial correlation (correlation over time) –
also cross-correlation between data sequences generated by different sensors has
to be taken into account, because the same traffic may be captured by several
sensors. For large traffic aggregates, the Gaussianity is justified by central-limit
type of arguments. Based on the above, we conclude that the setup considered
in this paper can be used to detect changes in load, caused by, for instance, a
(legal) increase in the number of users, or a DDoS (distributed denial of service)
attack.

At the methodological level, the testing procedure we propose is a sequen-
tial hypothesis test, in line with the popular CUSUM algorithm [14]. Our pro-
cedure monitors a likelihood ratio test statistic, and raises an alarm as soon
as it exceeds some predefined threshold. The question arises how this thresh-
old should be chosen so as to ensure that the number of false alarms does not
exceed a given (low) level. In case the observations are one-dimensional and
independent, the test’s false alarm performance can be assessed using a func-
tional central limit theorem to establish the convergence of the test statistic to a
Brownian motion [16]. Alternatively, since a false alarm is required to be a rare
event, a limit expression for the false alarm probability can be derived using
large deviations theory (concerned with the asymptotic behavior of rare event
probabilities), see e.g. [10] and [5, Ch. VI.E]. Choosing the smallest threshold
that satisfies the predefined level of false alarms ensures that an alarm is raised
quickly once a change has occurred.



In [11] we extended the large deviations (LD) approach to detect a change in
mean in serially correlated (one-dimensional) autoregressive moving average
(ARMA) processes. The main objective of the present paper is to further extend
such a LD approach to make it applicable to detect changes in scale in multi-
dimensional correlated data. Furthermore, we compare the method of testing
the sequence of observations (Xt)t∈N themselves, with an innovations based ap-
proach, where first the observations are transformed into i.i.d. innovations, and
then change point detection tests are performed on the innovations, see e.g.
[2]. Our testing procedure differs from the one considered in [2], which uses
the so-called local approach [2, 4.2.3] to determine the threshold for testing an
i.i.d. sequence, whereas in this paper the false alarm probabilities are evalu-
ated in the large deviations regime to choose the threshold. For the innovations
based approach we impose the weak assumption [3, 5.7.1] that the process be
linear and invertible, while for the observations based approach we need ad-
ditional assumptions on the underlying correlation structure. We validate the
proposed tests in a series of numerical experiments, which (i) study the trade-
off between the detection ratio and the corresponding delay, (ii) assess the gain
of multidimensional testing procedures (over multiple one-dimensional tests),
and (iii) provide a systematic comparison between (A) the observations-based
and (B) the innovations-based method.

This paper is organized as follows. In the next section we explain the change
in scale and the set-up of our LD-based hypothesis test in greater detail. In Sec-
tion 3 we compute the log-likelihood ratio test statistics for the observations
and the innovations based detection approach, before we derive the threshold
functions in Section 4. The results of the numerical evaluation are presented in
Section 5. We conclude in Section 6.

2 Detection Procedure for a Change in Scale

We are concerned with testing a stationary multidimensional Gaussian sequence
(Xt) against a change in scale, where after the change both the mean and vari-
ance are multiplied by some constant c. Each Xt is a d-dimensional column
vector consisting of the measurements of d different ‘sensors’ at (discrete) time
t. In this section we explain the general detection procedure; a more detailed
description for the case of a change in scale can be found in the following two
sections.

To detect a change in the traffic streams, we monitor windows of size n ∈ N,
i.e., at time t the n most recent observations (in the sequel denoted by X1, . . . , Xn)
are tested in order to decide whether a change has occurred at some point k ∈
{1, . . . , n}. In other words, we consider the hypotheses:

H0: No change has occurred within the window.
H1: A change occurred at some point within the window.

Thus, the alternative hypothesis is essentially the union of hypotheses:

H1(k): A change in scale occurred exactly at time k, for a specific k ∈ {1, . . . , n}.



It will turn out to be convenient to express the change point k via the window
size n, that is, we write k = nβ + 1, where (throughout the paper) β ∈ B =

{0/n, 1/n, . . . , (n − 1)/n}.
To set up the testing procedure, we may consider (A) testing the observa-

tions directly, or (B) testing the extracted independent sequence of innovations
– denoted by (εt) and defined in Section 3. We list some of the benefits and
drawbacks of both approaches in Table 1; the details are explained in the se-
quel. Our method for testing a window of size n can be summarized as follows.

(i) The log-likelihood ratio (LLR) test statistic Lnβ(·) for testing H0 against the
simple alternative hypothesis H1(nβ + 1) is computed as either (A) L X

nβ(X)
(when considering the observations) or (B) L ε

nβ(ε) (when considering the
innovations). The two approaches are equivalent under H0.

(ii) Based on large deviations theory, the threshold b(β) is obtained as (A) bX(β)
or (B) bε(β); it is a function of β such that for any value of β asymptotically
(for large n) the probability of raising a false alarm is kept at level α.

(iii) In line with [5, Ch. VI.E, Eqn. (43)] we reject H0 (“raise an alarm”)
(A) as soon as

max
β∈B

(
1
n
L X

nβ(X) − bX(β)
)

:= max
β∈B

(
1
n

log
gnβ(X)
fn(X)

− bX(β)
)
> 0, (1)

where fn and gnβ are the joint densities of X1, . . . , Xn under H0 and
H1(nβ + 1) respectively.

(B) Accordingly, for the innovations based approach, we raise an alarm
when

max
β∈B

(
1
n
L ε

nβ(ε) − bε(β)
)
> 0. (2)

We explain steps (i) and (ii) in greater detail in Sections 3 and 4.

3 Computation of the Log-Likelihood Ratio Test Statistic

We now formulate the null hypothesis and the alternative hypothesis for the
case of a change in scale in terms of an appropriate test statistic, for (A) the ob-
servations based approach, and (B) the innovations based approach. Approach
(A) can be used to detect a change point in a stationary Gaussian process, for
approach (B) we restrict our exposition to linear processes3, which allows for
the rich class of vector autoregressive moving average (VARMA) processes. In both
cases we may assume, without loss of generality, that the pre-change process
has mean vector 0 (we may subtract the original mean vector to achieve this).

(A) For the observations based approach, to compute the LLR, we consider
the n observations within each window jointly. The joint distribution of
X := (XT

1 , . . . , X
T
n )T under H0 is Nnd (0, Σ), a Gaussian distribution of di-

mension nd. We write the covariance matrix Σ of the joint observations

3 Generalization may be possible using Wold’s decomposition theorem.



Table 1: Characteristics of (A) the observations and (B) the innovations based approach

(A) (B)

Suitable test statistic for changes in mean
and variance but also in coefficients

Suitable for detecting changes in mean or
variance

Computationally expensive Recursive computation of LLR and re-
duced dimensionality

How to define the threshold function in
the multidimensional case is unclear, un-
less there is no shift in mean or data
streams are independent

We can compute the threshold function
for the change in scale explicitly

The process does not need to be invertible Requires invertibility

The observations are well-defined test
statistics

Since innovations are defined in terms of
past observations, initial conditions are
required

as a block Toeplitz matrix of the individual autocovariance matrices Γh =

Cov (Xt, Xt−h).
Now we can formulate H0 and H1 more specifically. For all β ∈ B we want
to test

H0 : X ∼ Ndn (0, Σ) vs. H1(nβ + 1) : X ∼ Ndn (ν,T ) ,

where

ν =
(
0T . . . , 0T , ν̄T , . . . , ν̄T

)T
, T =

(
Σ(dnβ) 0

0 c · Σ(dn(1−β))

)
,

with ν̄ = cµ − µ, µ denoting the mean vector before centering, and where
m in Σ(m) denotes the dimension of the matrix. For method (A), we assume
that the sequence before nβ + 1 is independent of the sequence afterward.
This assumption enables computations, and is reasonable if a change has
taken place, and the cause of the change is ‘external’ (as in the examples
mentioned in the introduction).
The LLR for testing X ∼ Nnd (0, Σ) against the simple alternative hypothesis
X ∼ Nnd (ν,T ) can be computed as

L X
n (X) =

1
2

log |Σ | − 1
2

log | T | + 1
2

XTΣ−1X − 1
2

(X − ν)TT−1(X − ν).

Filling in ν, Σ, T , the LLR for testing against a change in scale at a specific
point nβ + 1 becomes

L X
nβ(X) = −1

2
dn(1 − β) log c +

1
2

X̌T (
Σ(dn(1−β))

)−1
X̌

− 1
2c

(
X̌ − ν(dn(1−β))

)T (
Σ(dn(1−β))

)−1 (
X̌ − ν(dn(1−β))

)
, (3)



where X̌ := (XT
nβ+1, . . . , X

T
n )T.

(B) For the innovations based approach we need to impose further assump-
tions (see also Table 1). We focus on linear processes, i.e., we assume that Xt

can be modeled as

Xt =

∞∑
j=0

Ψ jZt− j =: Ψ (L)Zt, (4)

(L denoting the lag operator: LZt := Zt−1), with uncorrelated error terms
Zt ∼ Nd (0, Ω), and where the Ψ j form an absolutely summable sequence of
coefficient matrices [3].
We further need to assume that the process be invertible, i.e., that i.i.d. the
sequence of innovations

εt := Xt − E (Xt | Xt−1, . . . , X1) (5)

can be extracted as a well-defined function of present and past observations
(lie in their closed linear span). If Xt is given by a VARMA(p,q) process

Xt =

p∑
i=1

AiXt−i +

q∑
j=1

B jZt− j + Zt,

then a well-known sufficient condition for invertibility is that |B(z)| has
no roots on the unit circle, where B(z) = I +

∑q
j=1 B jz j denotes the MA-

polynomial [3].
Given such an invertibility assumption holds, a proportional change in the
covariance matrix of the observations (i.e. covariances are inflated by c)
can be detected as a proportional change in the covariance matrix of the
innovations, as it is known [3, Eqn. (11.1.13)] that under H0 the autocovari-
ances of Xt are given by Γh =

∑
j Ψ jΩΨ

T
j−h. It has been shown in [2] that (for

VARMA processes) the sequence of innovations is a sufficient statistic for
detecting a change in the mean value.
Then, defining θ = Ψ (L)−1ν̄, the above hypotheses can equivalently be for-
mulated as

H0 : εt ∼ Nd (0, Ω) , t = 1, . . . , n vs. H1(nβ + 1) :

εt ∼ Nd (0, Ω) , t ≤ nβ,
εt ∼ Nd (θ, cΩ) , t > nβ.

Since the innovations are independent, the LLR L ε
nβ(ε) for testing H0 against

H1(nβ + 1) can be expressed as the sum of the LLRs at time t > nβ (since the
LLR is zero for t ≤ nβ). Therefore, L ε

nβ becomes

L ε
nβ (ε) =

n∑
t=nβ+1

1
2

log
1
cd +

1
2
εT

t Ω
−1εt −

1
2c

(εt − θ)T Ω−1 (εt − θ) . (6)

Note that in this case we can compute the LLR for each new window re-
cursively (for details, see the literature on CUSUM, e.g., [6]). On the other
hand, in practice the true innovations after the change points can only be
estimated as the recursion (5) requires initial conditions. The effect is minor
if the order of the process is small (see Section 5).



The LLR test statistics obtained for approach (A) and (B) are compared with the
associated threshold functions as derived in the next section.

4 Derivation of the Threshold Function

In this section we show how to obtain the threshold function as bX(β) for the
observations based or bε(β) for the innovations based approach. We first out-
line the main idea behind the derivation of the threshold function for both ap-
proaches (therefore, the subscripts X and ε are omitted).

Let P0,E0 denote probability and expectation under H0. When testing H0
against H1(nβ+1) for any fixed β ∈ B, the probability of a type I error is given by
P0

(
Lnβ(·)/n > b(β)

)
. Since we wish this probability to be small, it certainly holds

that b(β) > E0Lnβ(·)/n, so that we are indeed concerned with a rare event. LD
theory suggests that for fixed β the false alarm probability can be approximated
by

P0
(1
n
Lnβ(·) > b(β)

) ≈ exp
(
−nI

(
b(β)

))
,

where I denotes a function specified below. Recall that we wish the false alarm
probability on the left hand side to be kept at a small level α. This suggests to
pick the threshold function b such that it satisfies

α = exp
(
−nI

(
b(β)

))
(7)

for all β ∈ B. This choice entails that raising a false alarm is essentially equally
likely irrespective of the supposed location of the change point within the win-
dow.

Now let us make the above more rigorous. The limiting logarithmic moment
generating function Λ(λ) associated with the distribution of the LLR is defined as

Λ(λ) := lim
n→∞

1
n

log Mn(λ) := lim
n→∞

1
n

logE0

(
eλLnβ(·)

)
; (8)

we assume for now that this function exists and is finite for every λ ∈ R. Define
I as the Fenchel-Legendre transform of Λ(λ), that is,

I
(
b(β)

)
= sup
λ∈R

(
λb(β) − Λ(λ)

)
. (9)

Provided that Λ exists and is finite, by the Gärtner-Ellis theorem [5,9], it holds
that

lim
n→∞

1
n

logP0(Lnβ(·) > nb(β)) = −I (
b(β)

)
.

In accordance with the idea expressed in (7), we choose the threshold function
b(β) such that it satisfies

−I (b(β)) = lim
n→∞

1
n

logP0

(
1
n
Lnβ(·) − b(β) > 0

)
= − γ (10)



for some positive γ = −1/n logα, across all β ∈ B. Asymptotically, as n→ ∞, the
probability of raising a false alarm within the window is then kept at level α.

To be able to obtain b(β) from (10), we need to compute the limiting log-
moment generating function Λ(λ) in more explicit terms (this way we also check
that it indeed exists and is finite for all λ).

(A) In Section 3 of [11] we outlined how to compute the moment generating
function Mn(λ) for testing X ∼ Nnd (0, Σ) against X ∼ Nnd (ν, T ) (for arbitrary
ν, Σ,T ):

Mn(λ) =
(
|Σ |
|T |

)λ/2 1
| λT−1Σ + (1 − λ)Idn |1/2

× exp
(
−λ

2
νTT−1ν +

λ2

2
νTT−1

(
λT−1 + (1 − λ)Σ−1

)−1
T−1ν

)
.

Filling in the specific ν, Σ,T for testing against a change in scale, this ex-
pression reduces to

Mnβ(λ) = c−λdn(1−β)/2
(
λ

c
+ 1 − λ

)−dn(1−β)/2
× exp

(
ν̄Tsnβν̄

λ2 − λ
2(λ + c − λc)

)
,

where snβ denotes the sum of all d dimensional covariance matrices within
the lower right dn(1 − β) × dn(1 − β) dimensional block matrix in Σ−1.
Using the expression we obtained for Mn(λ), the limiting log-moment gen-
erating function as defined in (8) becomes

Λ(λ) = −1
2
λd(1−β) log(c)− 1

2
d(1−β) log

(
λ

c
+ 1 − λ

)
+ lim

n→∞

1
n
ν̄Tsnβν̄

λ2 − λ
2(λ + c − λc)

.

We can evaluate the limit in the specific cases (i) Xt can be modeled as d
independent ARMA processes

Xit = Zit +

p∑
j=1

ai jXi,t− j +

q∑
j=1

bi jZi,t− j,

(i.e., the d monitored traffic streams are independent), or (ii) there is no
shift in mean, i.e. ν̄ = 0. The latter may happen, for example, if the number
of users stays constant while the variance of their load changes (e.g. due to
application changes).

(i) In the first case, the autocovariance matrices Γh are diagonal, and thus
the expression ν̄T snβν̄ reduces to

∑d
i=1 ν̄

2
i ti,nβ, where ν̄i is the size of the

mean shift of Xit, and ti,nβ denotes the sum of the entries of the lower
right n(1 − β) × n(1 − β)-dimensional block matrix of Σ−1

i , the inverse
covariance matrix of Xit. From [11, Lemma 1] we have

lim
n→∞

ti,nβ
n(1 − β) =

 1 −∑p
j=1 ai j

σi

(
1 +

∑q
j=1 bi j

) 
2

=: τi,



and hence, the limiting log-moment generating function exists and is
finite. The threshold bX(β) can then be evaluated by putting the result-
ing rate function

sup
λ

λbX(β) +
1
2

(1 − β)
λd log c + d log

(
λ

c
+ 1 − λ

)
− λ2 − λ
λ + c − λc

d∑
i=1

ν̄2i τi




equal to γ. Defining η = −d (1 − c)2 /2
∑d

i=1 ν̄
2
i τi, we compute the opti-

mizing λ to be

c
1 − c


η +

√
η2 + c − d + 1 +

4cη
1 − c

(
b(β)
1 − β +

1
2

log c
)
−1

− 1

 . (11)

The threshold function bX(β) can be evaluated using standard numer-
ical procedures.

(ii) If there is no shift in mean, then Mn(λ) does not depend on snβ. Hence
the limiting log-moment generating function always exists, and bX(β)
follows from

γ = I (bX(β)) = sup
λ

(
λbX(β) +

1
2

d(1 − β)
[
λ log c + log

(
λ

c
+ 1 − λ

)])
.

The optimizing λ is

−
(

d(1 − β)
2bX(β) + d(1 − β) log c

+
c

1 − c

)
.

(B) When using the innovations based approach, we may make use of the fact
that innovations are independent, in which case the LLR can be written as
a sum of the form

∑n
t=nβ+1 st as given in (6). It follows that Λ(λ) exists as a

finite number:

Λ (λ) = lim
n→∞

1
n

log
[
E0 exp (λs1)

]n(1−β)
= (1 − β) logE0 exp (λs1) .

The threshold can be found from putting

sup
λ

[
λbε(β) +

1
2

(1 − β)
(
λd log c + d log

(
λ

c
+ 1 − λ

)
− λ2 − λ
λ + c − λcθ

TΩ−1θ

)]
(12)

equal to γ.
The optimizing λ is similar to (11) (replace η by −d (1 − c)2 /2θTΩ−1θ).

As expected both approaches yield the same threshold function in case there
is no shift in mean. We now know how to compute the LLR and the threshold
function either using the observations or the innovations based approach. In the
next section we evaluate the performance of the resulting detection procedures
(1) and (2) respectively.



5 Numerical Evaluation

In this section we summarize the results of our numerical experimentation, car-
ried out with MATLAB. We investigate the performance of detection methods
(A) and (B) with respect to the false alarm rate and the detection delay, when
testing vector autoregressive (VAR) processes against a change in scale.

We begin in Section 5.1 with an illustrative example which outlines how
the testing methods (A) and (B) could be applied in practice. Then, in Section
5.2, we explain how the performance measures, false alarm rate and detection
delay, are evaluated. Finally, in Section 5.3, we demonstrate the potential gain
from using multidimensional detection procedures by comparing the multi-
dimensional procedure to the corresponding one-dimensional procedure that
tests each data stream individually.

5.1 On-line Detection

Let us first explain how to apply the detection methods set up in this paper for
on-line detection of changes in scale in multidimensional Gaussian processes.
We assume that one new observation arrives at a time, and the n most recent
observations are being tested against a change with scaling factor c. As an illus-
trative example, we run the following procedure.

– We simulate a VAR(1) process of length N according to

Xt = AXt−1 + Zt, (13)

where Zt is Gaussian white noise with Zt ∼ N (0, Ω) for t = 1, . . . , k − 1,
0 < k < N, and Zt ∼ N (θ, cΩ) afterward.

– We consider windows of size n < k, adding one new observation at a time
while deleting the oldest.

– In order to test whether a change in scale with scaling factor c has occurred
in a particular window, we determine whether (A) criterion (1) holds true if
the LLR is computed as a function of observations, or (B) criterion (2) holds
true if the LLR is expressed as a function of innovations. In the latter case,
the innovations are extracted as Xt − AXt−1 for all t, and thus, the assumed
independence between pre- and post-change observations is neglected. We
do so to account for the fact that in practice the true value of εk is not known
as it depends on unknown initial values.

– We repeat the above steps 15, 000 times, and divide the total number of
alarms raised for each window by 15, 000 so as to obtain the alarm ratio for
each window.

Two examples are presented in Fig. 1. It can be seen that the false alarm rate
(the ratio of alarms before the change point as indicated by the vertical line) is
indeed kept at a low level, whereas the alarm rate increases gradually to 1 after
the change has occurred. It is not surprising that the detection ratio depends
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(b) Mean shift ν̄ = (2, 2, 2)T

Fig. 1: Alarm ratios obtained when testing a three-dimensional AR(1) sequence of ob-
servations, simulated according to (13) with diagonal coefficient matrix A with diago-
nal entries 0.5 and diagonal input variance matrix Ω with diagonal entries 1, against a
change in scale with c = 2, α = 0.01, window size n = 50. The first window containing
the change is indicated by a vertical line.

on the position of the change point within the window – the more observations
have been affected by the change, the easier the change can be detected.

The figure shows that method (B) results in a slightly higher detection rate
than method (A). This may be due to the fact that in the test set-up for approach
(A) we neglected the dependence between X1, . . . , Xk−1 and Xk, . . . , XN under
H0.

As expected, we also see that if ν̄ , 0, i.e., if there is a change in the mean
value also, then both false alarm rate and detection rate improve; the shift in
mean is an additional indicator that a change has occurred (for a formal proof
of this intuitive result, see [2, Ex. 4.1.9]). In the following, we focus on the worst-
case setting ν̄ = 0 when evaluating the performance measures, false alarm ratio
and the detection delay, in the next section.

5.2 Performance Measures

To evaluate the false alarm rate, we perform the above experiment; however,
instead of shifting windows along a series of length N > n, we now consider a
single window of observations that all correspond to H0. Then every alarm that
is raised in 15, 000 runs is a false alarm, and hence, the number of change points
detected on average gives an estimate for the false alarm rate. The significance
level is set to α ∈ {0.01, 0.05}, and we pick c = 2 (as no change is simulated, the
choice of c has little impact on the test results).

In order to evaluate the detection delay, we simulate a VAR(1) sequence where
the first 49 observations correspond to H0 while all later observations have been
affected by the change. We test windows of size 50, at each point in time adding
one new observation and dropping the oldest (thus, in window i only i out of
50 observations have been affected by the change). The procedure is stopped as



soon as the change has been recognized, i.e., when the first alarm was raised.
We then take the number of the first window for which this happened, averaged
over 30, 000 runs (to obtain an estimate for the average run length under H1, i.e.
the number of decisions that have to be taken before the change is detected),
and subtract one to obtain the detection delay.

The results of these experiments, where data streams are tested jointly, are
presented in Table 2 for a number of two-dimensional examples (next to the
results from testing the streams separately as explained in Section 5.3). It can be
seen that – as expected – the outcome of the experiments is similar for methods
(A) and (B), and the false alarm rate is generally close to the significance level
α as desired. Table 2 also shows that the detection delay is small, and provides
quantitative insight into the the trade-off between the false alarm rate and the
detection delay: It suffices if 22% of the observations have been affected by the
change when α = 0.01 while less than 12% need to be affected when α = 0.05.

These and similar examples suggest that the test performance is affected nei-
ther by the sign (positive or negative) nor by the magnitude of the correlation
induced by Ω because the change size is relative to the size of the covariances
if ν̄ = 0. (The effect of the shift size ν̄ has been investigated in [11] for the case
of a change in mean only.) A higher correlation via A on the other hand seems
to have a positive effect on the delay – the effect of a change is enhanced due to
the cross correlation.

5.3 A Case for Multidimensional Testing Procedures

In this section we demonstrate the merits of multidimensional detection proce-
dures. In general, the signature of a change in scale is stronger when it affects
d > 1 data streams simultaneously. In fact, in case the d tested data streams are
independent, and the detection probability for each of them is p, then the de-
tection probability when testing the d streams simultaneously is 1− (1− p)d. For
example, if the detection probability for one data stream is 0.8, then the detec-
tion probability for testing three i.i.d. data streams simultaneously is 0.992. As
a consequence, the multidimensional procedure outperforms a procedure that
tests one of the individual data streams.

The more interesting question is whether the multidimensional procedure
(testing data streams jointly) performs better than a one-dimensional approach
where each of the d data streams is tested separately but an alarm is raised as
soon as a change has been detected in any of the streams. In the latter case the
significance level is corrected using the (conservative) Bonferroni method [7],
that is, it is put to α/d for each one-dimensional testing procedure.

The main conclusion we draw from the results presented in Table 2 is that
indeed the multidimensional detection procedure outperforms the method of
separate testing of data streams in terms of false alarm rate and detection delay,
even if the sequences are independent. However, it should be noted that this
benefit comes at the cost of a longer computation time.

Furthermore, it can be seen that testing the data streams separately results in
a considerably larger false alarm rate as soon as the data streams are mutually



dependent via the coefficient matrix A; due to the increased correlation, the
process Xt makes larger jumps, but the separate testing does not account for
this. It is surprising that the performance in terms of detection delay is good
when streams are tested separately, but this may be explained by the high false
alarm rate.

Cross-correlations in the covariance matrix of the innovations process on
the other hand have a negative impact on the detection delay when testing the
streams separately, whereas the false alarm rate remains low. This is because
the fluctuations of the process Xt are of smaller magnitude if the error terms Zit

are cross-correlated. (In the example given in the table, Zt is generated as Zt =

Ω1/2Yt, where the two components of Yt are independent standard Normals.
Therefore, Z1t = Y1t and Z2t = 0.5Y1t + 0.866Y2t. This way it can be seen that
jumps of Zt are more moderate than when there is no cross-correlation in Ω.)

6 Conclusion

In this paper we explained how to set up a testing procedure for detecting
a change in scale within multidimensional serially correlated Gaussian pro-
cesses, and found appropriate threshold functions. In the networking context,
this type of change may occur for instance as a change in scale in correlated
traffic streams due to an increase in the number of users, or due to an attack on
the network.

We applied the testing procedure to (A) the sequence of observations and
(B) the sequence of innovations. We listed benefits and drawbacks of each ap-
proach, and saw that both performed well in numerical experiments. We also
demonstrated the supremacy of multidimensional detection procedures – com-
pared to one-dimensional testing methods – for detecting changes that affect
multiple data streams simultaneously, even if the data streams are indepen-
dent.

A number of interesting questions arise. For example, can we quantify the
advantage of approach (B) over (A) in terms of running time? Can we com-
pute the threshold function in more general cases? How can we generalize the
LD testing procedure, for example, to detect changes in processes that are not
purely indeterministic, or to detect different types of changes, such as changes
in correlation structure? We hope to address these questions in future research.
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Table 2: False alarm rates and detection delays obtained from testing two-dimensional
VAR(1) sequences, using (A) the observations-based approach and (B) the innovations-
based approach, with c = 2, window size n = 50, mean zero. Streams are tested jointly
with significance level α, and separately (ignoring interdependence) with significance
level α/2. In the latter case an alarm is raised as soon as a change point is found in any
of the d streams. The standard error is given in parentheses.

Example α Testing
False alarm rate Delay

(A) (B) (A) (B)

A =
(

0.5 0
0 0.5

)
, Ω =

(
1.0 0
0 1.0

) 0.01
separately

0.007 0.007 14.278 14.139
(0.0006) (0.0006) (0.075) (0.075)

jointly
0.008 0.007 10.510 10.289

(0.0007) (0.0007) (0.058) (0.058)

0.05
separately

0.031 0.032 7.998 7.818
(0.0014) (0.0015) (0.050) (0.050)

jointly
0.038 0.038 5.992 5.802

(0.0016) (0.0016) (0.040) (0.040)

A =
(

0.5 0.4
0.4 0.5

)
, Ω =

(
1.0 0
0 1.0

) 0.01
separately

0.397 0.374 3.264 3.438
(0.0040) (0.0040) (0.036) (0.037)

jointly
0.008 0.007 7.384 6.970

(0.0007) (0.0007) (0.055) (0.054)

0.05
separately

0.552 0.529 1.527 1.625
(0.0041) (0.0041) (0.022) (0.023)

jointly
0.038 0.038 4.105 3.768

(0.0016) (0.0016) (0.037) (0.036)

A =
(

0.5 0
0 0.5

)
, Ω =

(
1.0 0.5
0.5 1.0

) 0.01
separately

0.006 0.006 15.502 15.340
(0.0006) (0.0006) (0.082) (0.082)

jointly
0.008 0.007 10.509 10.289

(0.0007) (0.0007) (0.058) (0.058)

0.05
separately

0.031 0.031 8.782 8.634
(0.0014) (0.0014) (0.055) (0.055)

jointly
0.038 0.038 5.992 5.802

(0.0016) (0.0016) (0.040) (0.040)

A =
(

0.5 0.4
0.4 0.5

)
, Ω =

(
1.0 0.5
0.5 1.0

) 0.01
separately

0.515 0.485 2.674 2.919
(0.0041) (0.0041) (0.035) (0.037)

jointly
0.008 0.007 7.458 7.023

(0.0007) (0.0007) (0.055) (0.055)

0.05
separately

0.640 0.610 1.295 1.428
(0.0039) (0.0040) (0.023) (0.022)

jointly
0.038 0.038 4.146 3.796

(0.0016) (0.0016) (0.037) (0.036)
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