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ABSTRACT. A common assumption when modeling queuing systems is that arrivals behave like a
Poisson process with constant parameter. In practice, however, call arrivals are often observed to be
significantly overdispersed. This motivates that in this paper we consider a mixed Poisson arrival
process with arrival rates that are resampled every N−α time units, where α > 0 and N a scaling
parameter.

In the first part of the paper we analyse the asymptotic tail distribution of this doubly stochastic
arrival process. That is, for large N and i.i.d. arrival rates X1, . . . , XN , we focus on the evaluation of
the probability that the scaled number of arrivals exceeds Na,

PN (a) := P
(
Pois

(
NXNα

)
> Na

)
, with XN :=

1

N

N∑
i=1

Xi.

The logarithmic asymptotics of PN (a) are easily obtained from previous results; we find constants rP
and γ such thatN−γ logPN (a)→ −rP asN →∞. Relying on elementary techniques, we then derive
the exact asymptotics of PN (a): For α < 1

3
and α > 3 we identify (in closed-form) a function P̃N (a)

such that PN (a)/P̃N (a) tends to 1 as N →∞. For α ∈ [ 1
3
, 1
2
) and α ∈ [2, 3) we find a partial solution

in terms of an asymptotic lower bound. For the special case that the Xi s are gamma distributed, we
establish the exact asymptotics across all α > 0. In addition, we set up an asymptotically efficient
importance sampling procedure that produces reliable estimates at low computational cost.

The second part of the paper considers an infinite-server queue assumed to be fed by such a
mixed Poisson arrival process. Applying a scaling similar to the one in the definition of PN (a), we
focus on the asymptotics of the probability that the number of clients in the system exceeds Na.
The resulting approximations can be useful in the context of staffing. Our numerical experiments
show that, astoundingly, the required staffing level can actually decrease when service times are more
variable.
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1. INTRODUCTION

In communications engineering it is increasingly accepted that traditional Poisson processes do
not succeed in capturing the variability that is typically observed in real call arrival processes [12,
19]. This led to the idea to instead use Cox processes [5] to model arrivals, i.e., Poisson processes
in which the arrival rate follows some (non-negative) stochastic process. Perhaps the simplest
choice, advocated in [9], is to resample the arrival rate (in an i.i.d. manner) every ∆ units of time;
during the resulting time intervals the arrival rate is assumed constant. We denote these i.i.d.
arrival rates by (Xi)i∈N. This paper studies two settings in which such an overdispersed arrival
process is featured.

1. Number of arrivals. We start by studying the tail asymptotics of the total number of arrivals in a
time interval of given length. We do so in a scaling regime that was proposed in [9], in which the
arrival rates and sampling frequency are jointly inflated as follows. In the first place, it is natural to
assume that arrival rates are large, as these represent the contributions of many potential clients;
this can be achieved by letting these arrival rates beNX1, NX2, . . . for i.i.d. (Xi)i∈N and some large
N . In addition, the sampling frequency is set to Nα (assumed to be integer) and hence the size of
each time slot is assumed to be ∆ = N−α. Evidently, the larger α, the more frequently the arrival
rate is resampled.
The focus is on the probabilities PN (a) and pN (a), where

PN (a) := P
(
Pois

(
NXNα

)
> Na

)
, with XN :=

1

N

N∑
i=1

Xi,

and pN (a) denotes the corresponding probability that the mixed Poisson random variable equals
Na (assumed to be integer). We consider the situation that a is larger than ν := EXi, which entails
that the event under consideration is rare and that we are in the framework of large deviations
theory.
We would like to stress the important role that is played by the time-scale parameter α > 0. One
could image that in a rapidly changing environment, the inherent overdispersion of the arrival
process hardly plays a role, whereas in a slowly changing random environment, overdispersion
is expected to be more dominant. Hence the parameter α can be tweaked in order to match any
real-world scenario in that sense. That is, if α is large, since the arrival rate is resampled relatively
frequently, it is anticipated that the mixed Poisson random variable behaves Poissonian with pa-
rameter Nν. If on the contrary α is small, one would expect that detailed characteristics of the
distribution of the Xi matter. For α = 1 both effects play a role. This intuition underlies nearly all
results presented in this paper.

2. Number of customers in an infinite-server queue. In the second part of this paper we focus on a
cornerstone model in the design and performance evaluation of communication networks: the
infinite-server queue. This model can be used to produce approximations for many-server systems.
In our paper, the arrival process is the overdispersed process we introduced above, and the ser-
vice times are i.i.d. samples from a (non-negative) distribution with distribution function F (·).
The number of clients in this infinite-server queue, under the arrival process described above, is
studied in [9]. As it turns out, one can prove the (conceivable) property that the number of clients
in the system at time t (which we, for simplicity, assume to be a multiple of ∆), has a mixed Poisson
distribution, i.e., a Poisson distribution with random parameter. This parameter is given by

t/∆∑
i=1

Xi ∆ fi(t,∆),
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where fi(t,∆) denotes the probability that a call arriving at a uniformly distributed epoch in the
interval [(i − 1)∆, i∆) is still in the system at time t. Evidently, for small ∆ this probability es-
sentially behaves as F(t − i∆), with F(·) := 1 − F (·) denoting the complementary distribution
function.
We renormalize time such that t ≡ 1 (which can be done without loss of generality), and again
impose the scaling along the lines of [9]: the arrival rates are NXi and the interval width N−α.
Then the number of clients in the system is Poisson with random parameter

Nα∑
i=1

(NXi)N
−α fi(1, N

−α) = N1−α
Nα∑
i=1

Xi ωi(N
α), (1)

where ωi(N) := fi(1, N
−1) ≈ F(1− i/N). A clearly relevant object of study concerns the probabil-

ity that the number of clients in the system exceeds some threshold Na:

QN (a) := P

(
Pois

(
N1−α

Nα∑
i=1

Xi ωi(N
α)

)
> Na

)
; (2)

qN (a) denotes the corresponding probability that the mixed Poisson random variable equals Na.
To ensure that the event under consideration is rare, a is assumed to be larger than

ν

Nα

Nα∑
i=1

ωi(N
α) ≈ ν

Nα

Nα∑
i=1

F(1− i/Nα) ≈ ν
∫ 1

0
F(x)dx.

A related question of practical interest concerns staffing: how many servers should be allocated to
ensure a given service level for customers or jobs arriving according to a mixed Poisson process in
a random environment? Approximating the many-server model by its infinite-server counterpart,
we approach this classical problem in queueing theory as an asymptotic dimensioning problem:
we want to find the smallest a such that QN (a) (or qN (a)) is below some desired (typically small)
ε as N tends to infinity (cf. [4]). The resulting procedure has applications in the context of call
centers, cloud computing or in the design of data centers [14, 17]. Related literature on (dynamic)
staffing procedures in such settings is, e.g., [10, 18, 19]; see also the recent review [6] and the
references therein. Previous work that addresses overdispersion in the arrival process includes
[2, 8, 11]. Our approach in this paper is different to earlier work in that it uses exact asymptotics to
approximate the objective function that we want to minimize in the staffing problem. As we focus
on the large-deviations setting, the technique we develop is specifically useful in the regime in
which the performance requirements are strict (i.e., the probability of service degradation should
be kept low).

We now comment on the type of results we establish in this paper. As is common in the literature,
we first consider logarithmic asymptotics, that is, we identify a constant rQ > 0 (that depends on a)
such that, for γ := min{α, 1},

lim
N→∞

1

Nγ
logQN (a) = −rQ. (3)

This is easily done by using the techniques from [9].
These logarithmic asymptotics provide useful insight into the decay of the probabilities of interest,
but it should be noted that they are inherently imprecise. More specifically, they suggest that one
could use ‘naive’ approximations of the form

PN (a) ≈ e−rPN
γ
, QN (a) ≈ e−rQN

γ
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forN large. It is important to notice, however, that (3) only entails that PN (a) = ξ(N) exp(−rPNγ),
with ξ(·) being subexponential in the sense that

lim
N→∞

1

Nγ
log ξ(N) = 0.

In other words, it does not rule out that, for instance, ξ(N) = 1010, or NM for some given M , or
even exp(N0.99 γ). This motivates the interest in exact asymptotics. Here, the objective is to identify
a function P̃N (a) such that P̃N (a)/PN (a)→ 1 as N →∞ (which we denote throughout the paper
by PN (a) ∼ P̃N (a)), leading to the evident approximation PN (a) ≈ P̃N (a). Along the same lines
we would like to find the exact asymptotics Q̃N (a) for the probability QN (a).

The contributions and organization of our paper are as follows. In Sections 2, 3 and 4 we focus
on the evaluation of the probabilities PN (a) and pN (a). After having introduced the notation, in
Section 2 we first briefly present the logarithmic asymptotics. We then use elementary techniques
to derive the exact asymptotics, however, as it turns out, these only apply when the time scales of
the arrival process and the resampling are sufficiently separated: we address the cases α < 1

3 and
α > 3 (with a partial solution for α ∈ [1

3 ,
1
2) and α ∈ [2, 3) in terms of an asymptotic lower bound).

In Section 3 it becomes clear why such elementary techniques do not work across all values of
α: for the important special case of the Xi corresponding to i.i.d. gamma distributed random
variables [11] we find the exact asymptotics for all α > 0, and in the range (1

2 , 2) \ {1} these turn
out to have a rather intricate shape.
Section 4 focuses on rare-event simulation as a means to find an accurate approximation at rela-
tively low computational cost: we propose an importance-sampling based technique, which we
prove to be asymptotically efficient.
In Section 5 we shift our attention to the probabilitiesQN (a) and qN (a). Again, logarithmic asymp-
totics can be found, and in addition we manage to identify the exact asymptotics for the case α = 1.
By a series of numerical examples it is illustrated how the resulting approximation can be used for
staffing purposes. We performed extensive experiments, and make the striking observation that
increasing the variability of the service times (e.g. Pareto service times rather than exponential
ones) often leads to less conservative staffing rules.

2. ASYMPTOTICS OF PN (a)

We start by introducing the framework that we consider throughout the paper. In our setup we let
(Xi)i∈N be a sequence of i.i.d. random variables distributed as a generic random variableX , where
ν := EXi. Assume that the moment-generating function of X , denoted by MX(ϑ) := E

[
eϑX

]
, is

finite in an open set containing the origin. The Fenchel-Legendre transform (or convex conjugate) of
the cumulant-generating function ΛX(ϑ) := logMX(ϑ) is defined as

IX(a) := sup
ϑ∈R
{ϑa− ΛX(ϑ)} . (4)

We assume that the optimizing ϑ in (4) indeed exists, and we denote it by ϑ?X (thus suppress-
ing that ϑ?X actually depends on a). Under these conditions, it is known that the sample mean
XN := N−1

∑N
i=1Xi satisfies a large deviations principle with rate function IX(·) (see, e.g., [7]).

Furthermore, a result by Bahadur and Rao [1] states that we have the following exact asymptotics
forXN : when a > ν,

lim
N→∞

P
(
XN > a

)
eN IX(a)

√
N = CX(a). (5)

We assume that X is non-lattice, in which case CX(·) takes the form

CX(a) =
1

ϑ?X
√

2πΛ′′X(ϑ?X)
, (6)
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where Λ′′X(ϑ?X) denotes the second derivative of ΛX(ϑ) evaluated at ϑ?X ; ifX is lattice, the constant
CX(a) should be defined slightly differently [7, Thm. 3.7.4]. There is also a local limit version of (5):
with ξN (·) the density of

∑N
i=1Xi, from [15],

lim
N→∞

ξN (Na) eNIX(a)
√
N = CX(a)I ′X(a). (7)

In our analysis the tail asymptotics of Poisson random variables play a crucial role. We note that
the Bahadur-Rao asymptotics entail that for the probabilities

ψN (a |x) := P (Pois (Nx) > Na) , (8)

it holds that

lim
N→∞

ψN (a |x)eN I(a |x)
√
N = C(a |x), (9)

for a > x. Here, I(· |x) is the rate function associated with a Poisson random variable with pa-
rameter x, that is, I(· |x) is the Fenchel-Legendre transform of the cumulant-generating function
Λ(ϑ) = x(eϑ−1) of the Poisson random variable. Inserting the optimizer ϑ? = log(a/x), this yields
I(a |x) = a log(a/x) − a + x. Bearing in mind that the Poisson variable is lattice, it turns out that
the function C(a |x) takes the form (cf. (6))

C(a |x) :=
1

1− exp (ϑ?)

1√
2πΛ′′(ϑ?)

=
1

1− a/x
1√
2πa

.

Let us first present the logarithmic asymptotics of PN (a) (the same logarithmic asymptotics hold
for pN (a)). Here we merely state the results as the proof is exactly as in [9, Section 4.1]. We
distinguish between the cases α > 1 and α < 1; the former case we refer to as the fast regime as the
Xi’s are sampled relatively frequently, whereas the latter case is the slow regime. For completeness,
the logarithmic asymptotics for the intermediate case α = 1, though standard, are included as
well.

◦ In the fast regime Nα is substantially larger than N , and hence the rare event will be es-
sentially due to XNα being close to ν, and the Poisson random variable with parameter
(roughly) Nν exceeding Na. Accordingly, following the argumentation in [9], one obtains

lim
N→∞

1

N
logPN (a) = −I(a | ν).

This result entails that PN (a) decays essentially exponentially.
◦ In the slow regime, assuming the support of Xi is unbounded, the rare event will be a

consequence of the joint effect of (i)XNα being close to a, and (ii) the Poisson variable with
parameter (roughly) Na attaining a typical value; the first event is rare, but the second is
not. In this regime, we thus have

lim
N→∞

1

Nα
logPN (a) = −IX(a);

observe that this corresponds to subexponential decay.
◦ For α = 1, the random variable Pois

(
NXNα

)
can be written as the sum of N i.i.d. contri-

butions, each of them distributed as Z := Pois(X). Noting that

logE exp (ϑZ) = ΛX(eϑ − 1),

a straightforward application of Cramér’s theorem [7] yields that the decay is exponential:

lim
N→∞

1

N
logPN (a) = − sup

ϑ

(
ϑa− ΛX(eϑ − 1)

)
=: IZ(a). (10)
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In the remainder of this section we show that for a range of values of α the exact asymptotics
of PN (a) and pN (a) can be found relying on elementary probabilistic techniques. We focus on
the fast regime in Section 2.1, and on the slow regime in Section 2.2. We conclude with the exact
asymptotics for the intermediate case α = 1, which follow directly from the Bahadur-Rao result;
see Section 2.3.

2.1. Fast regime. In this section we assume that α > 1. We start by proving an upper bound for
PN (a). In self-evident notation, we have

PN (a) =

∫ ∞
0

ψN (a |x)P
(
XNα ∈ dx

)
, (11)

with ψN (a |x) as defined in (8). For any δ, Eqn. (11) is majorized by∫ ν+Nδ

ν−Nδ

ψN (a |x)P
(
XNα ∈ dx

)
+ P

(∣∣XNα − ν
∣∣ > N δ

)
; (12)

we determine an appropriate value for δ later on. The first term in (12) is evidently bounded from
above by ψN (a | ν +N δ). Motivated by (9), we will show that, as N →∞,

ψN (a | ν +N δ) eN I(a | ν)
√
N → C(a | ν), (13)

whereas the second term in (12) turns out to be asymptotically negligible.
To verify that (13) holds, note that C(a | ν)/C(a | ν + N δ) → 1 when δ < 0, which follows by a
standard continuity argument. We therefore proceed by considering N I(a | ν) − N I(a | ν + N δ),

which behaves as

N
(
a log

a

ν
+ a− ν

)
−N

(
a log

a

ν +N δ
+ a− (ν +N δ)

)
= Na log

(
1 +

N δ

ν

)
+N1+δ =

(a
ν

+ 1
)
N1+δ +O(N1+2δ)→ 0

if δ < −1. Thus, for such δ we have established (13).
Now consider the second term of (12), and, more specifically,

P
(∣∣XNα − ν

∣∣ > N δ
)

eN I(a | ν)
√
N, (14)

for N →∞. Due to a Chernoff bound, we have

P
(
XNα ≥ ν +N δ

)
6 exp

(
−Nα sup

ϑ

(
ϑ(ν +N δ)− logE eϑXi

))
= e−N

αIX(ν+Nδ),

and hence (14) is majorized by

e−N
αIX(ν+Nδ) eN I(a | ν)

√
N + e−N

αIX(ν−Nδ) eN I(a | ν)
√
N.

Now realize that IX(ν + N δ) = 1
2I
′′
X(ν)N2δ + O(N3δ) and similarly for IX(ν − N δ). Thus, the

expression from the previous display vanishes when α + 2δ > 1, or, equivalently, δ > (1 − α)/2,
where (1− α)/2 < 0 since α > 1.
We note that the requirements δ < −1 (corresponding to the first term) and δ > (1 − α)/2 (corre-
sponding to the second term) are both fulfilled when α > 3. Thus, we have shown that for α > 3

an asymptotic upper bound for PN (a) is given by (13).
Let us now turn to the corresponding lower bound. The probability of interest majorizes

ψN (a | ν −N δ)

∫ ν+Nδ

ν−Nδ

P
(
XNα ∈ dx

)
.

As above, we can check that for δ < −1,

ψN (a | ν −N δ) eN I(a | ν)
√
N → C(a | ν),
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and, by the Bahadur-Rao result (5),∫ ν+Nδ

ν−Nδ

P
(
XNα ∈ dx

)
∼ 1− 2 exp

(
−1

2
I ′′X(ν)NαN2δ

)
→ 1,

when δ > −α/2. This can be realized when α > 2 (and is hence fulfilled when α > 3 as well). This
proves the lower bound.
Combining the upper and lower bounds, we thus find the following result.

Proposition 2.1. For α > 3, as N →∞,

PN (a) ∼ e−N I(a | ν)C(a | ν)√
N

.

For α ∈ (2, 3],

lim inf
N→∞

PN (a) eN I(a | ν)
√
N > C(a | ν).

Remark 1. This result is in accordance with the intuition we gave at the beginning of the section
– in the fast regime the asymptotics of PN (a) depend on the distribution of the Xi only through
their mean ν. This also gives an indication as to why the asymptotics for α closer to 1 may be
more delicate to deal with. One can imagine that for more moderate values of α the result may
not be precise enough, and that also large deviations coming from XNα may play a role in that
regime. This is confirmed in Section 3, where we consider an example with Xi ∼ Exp(λ). It turns
out that the exact asymptotic expression for α ∈ (1, 2) is indeed more intricate than the expression
provided in Thm. 2.1. ♦

Remark 2. Along the same lines the asymptotics for pN (a) can be found. They turn out to be, for
α > 3, as N →∞,

pN (a) ∼ e−N I(a | ν)C(a | ν)√
N

(
1− e−I

′(a | ν)
)
.

This is in line with the result of Prop. 2.1: informally,

pN (a) = PN (a)− PN (a+ 1/N)

≈ C(a | ν)√
N

e−N I(a | ν) − C(a+ 1/N | ν)√
N

e−N I(a+1/N | ν)

≈ C(a | ν)√
N

e−N I(a | ν)
(

1− e−I
′(a | ν)

)
,

for large N , based on elementary Taylor arguments. ♦

2.2. Slow regime. We now consider the slow regime, i.e., α < 1. We have to distinguish between
two cases.

◦ In Case I we assume that Xi may have outcomes larger than a with positive probability:

b+ := sup{b : P(Xi > b) > 0} > a;

as a consequence IX(a) <∞. Recall that in this case, for Nα substantially smaller than N ,
it can be argued that PN (a) essentially behaves as P(XNα > a).
◦ In Case II we consider the opposite situation: b+ < a. Then the intuition is that the rare

event under consideration is the consequence of large deviations of both random compo-
nents: of (i) XNα being close to b+, and (ii) the Poisson variable with parameter (roughly)
Nb+ attaining the atypical value Na.
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Case I. We start by establishing an upper bound. Note that PN (a) is majorized by

P
(
XNα > a−N δ

)
+ ψN (a | a−N δ).

Due to the Bahadur-Rao result stated in (5), the first term is asymptotically equivalent to

N−α/2CX(a−N δ)e−N
αIX(a−Nδ),

which behaves as N−α/2CX(a)e−N
αIX(a) when δ < −α (as a direct consequence of the standard

expansion IX(a−N δ) = IX(a)−N δI ′X(a)+O(N2δ)). In addition, again using the Chernoff bound,
we have

eN
αIX(a) ψN (a | a−N δ) 6 eN

αIX(a) exp

(
−N

(
a log

a

a−N δ
+N δ

))
. (15)

Observe that the exponent in the second factor of the right hand side of (15) behaves as N2δ+1. We
conclude that (15) vanishes if 2δ + 1 > α, or, equivalently, δ > (α− 1)/2 (note that (α− 1)/2 < 0).
In order to simultaneously meet δ < −α and δ > (α− 1)/2, we need to have α < 1

3 .

We now turn to the lower bound. The probability of interest is bounded from below by

ψN (a | a+N δ)P
(
XNα ≥ a+N δ

)
.

The first factor is bounded from below by 1 minus a term that decays as exp(−N1+2δ) (which goes
to 1 when δ > −1

2 ), whereas the second behaves as N−α/2CX(a)e−N
αIX(a) when δ < −α. In other

words, there is an appropriate δ for all α < 1
2 . We have thus arrived at the following result.

Proposition 2.2. Assume b+ > a. For α < 1
3 , as N →∞,

PN (a) ∼ e−N
α IX(a)CX(a)

Nα/2
.

For α ∈ [1
3 ,

1
2),

lim inf
N→∞

PN (a) eN
α IX(a)Nα/2 > CX(a).

Remark 3. Note that here, in contrast with Prop. 2.1, the rate function is that of X rather than the
Poisson random variable. As expected, when α is small, the rare event is typically a result of a
large deviation of XNα . However, for values of α closer to 1 the same reasoning as in Remark 1
applies, and we do not expect a simple asymptotic expression as given in Prop. 2.2 to hold for all
α ∈ (1

3 , 1) (as will be confirmed in Section 3, which covers the special case in which the Xi are
exponentially distributed). ♦

Remark 4. As in Remark 2, the asymptotics for pN (a) can be found as well. As it turns out, as
N →∞,

pN (a) ∼ e−N
α IX(a)CX(a)I ′X(a)

N1−α/2 .

This is consistent with the result stated in Prop. 2.2:

pN (a) = PN (a)− PN (a+ 1/N)

≈ CX(a)

Nα/2
e−N

α IX(a) − CX(a+ 1/N)

Nα/2
e−N

α IX(a+1/N)

≈ CX(a)

Nα/2
e−N

α IX(a)
(

1− e−N
α−1I′X(a)

)
≈ CX(a)I ′X(a)e−N

α IX(a)Nα/2−1,

for large N . Note that the asymptotic expansion of PN (a) has a polynomial factor N−α/2, whereas
pN (a) has a polynomial factor Nα/2−1. So in this case PN (a) and pN (a) are not (asymptotically)
off by a constant, but by a constant multiplied by Nα−1. ♦
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Case II. In the above arguments for the slow regime, it is crucial that we assumed that Xi can
exceed a with positive probability (which entails that IX(a) <∞). We now consider the situation
that b+ < a. We derive the exact asymptotics of PN (a) by separately considering a lower bound
and an upper bound. We throughout assume that both IX(b+) and I ′X(b+) are finite. The proof
essentially follows that of [3], in which exact asymptotics of the Markov-modulated infinite-server
queue are addressed.
We start with the lower bound. Let K the smallest value in {2, 3, . . .} such that −1/K is strictly
larger than α− 1. Fix δ ∈ (α− 1,−1/K). We have, for α < 1,

PN (a) >
∫ b+

b+−Nδ

ψN (a |x)P
(
XNα ∈ dx

)
=

∫ b+

b+−Nδ

ψN (a |x)NαξNα(Nαx)dx,

recalling that ξN (·) denotes the density of
∑N

i=1Xi. Fix an arbitrary ζ > 0. The right-hand side
of the previous display majorizes, by Petrov’s local limit version of the Bahadur-Rao result (5), in
combination with (9), for N sufficiently large,

(1− ζ)

∫ b+

b+−Nδ

C(a |x)√
N

e−N I(a |x) · CX(x)I ′X(x)Nα/2e−N
αIX(x)dx.

This is in turn asymptotically equal to, with γ(a) := C(a | b+)CX(b+)I ′X(b+), using the transfor-
mation y := b+ − x,

(1− ζ) γ(a)N (α−1)/2e−N I(a | b+)e−N
αIX(b+)

∫ Nδ

0
eNφ1(y) eN

αφ2(y)dy, (16)

where

φ1(y) := −I(a | b+ − y) + I(a | b+) = a log

(
1− y

b+

)
+ y, φ2(y) := −IX(b+ − y) + IX(b+).

For all y ∈ [0, N δ], there exist `i and ui (i = 1, 2) such that

`1N
1+Kδ +

K−1∑
k=1

β1,kN yk 6 Nφ1(y) 6 u1N
1+Kδ +

K−1∑
k=1

β1,kN yk, β1,1 := 1− a

b+
,

`2N
α+Kδ +

K−1∑
k=1

β2,kN
αyk 6 Nαφ2(y) 6 u2N

α+Kδ +
K−1∑
k=1

β2,kN
αyk;

observe that β1,1 < 0. We now further analyze the integral in (16). We find, using the above
inequalities and the fact that both 1 +Kδ < 0 and α+Kδ < 0 (as we have chosen δ < −1/K),∫ Nδ

0
eNφ1(y) eN

αφ2(y)dy > e`1N
1+Kδ+`2Nα+Kδ

∫ Nδ

0
exp

(
K−1∑
k=1

β1,kN yk +
K−1∑
k=1

β2,kN
αyk

)
dy

∼
∫ Nδ

0
exp

(
K−1∑
k=1

β1,kN yk +

K−1∑
k=1

β2,kN
αyk

)
dy.

Applying the transformation z := N y, and using that δ > −1, this integral can be evaluated as

1

N

∫ Nδ+1

0
exp

(
K−1∑
k=1

β1,kN
1−k zk +

K−1∑
k=1

β2,kN
α−kzk

)
dz ∼ 1

N

∫ ∞
0

eβ1,1zdz =
1

N
· b+
a− b+

.

Letting ζ ↓ 0, we have thus found

lim inf
N→∞

PN (a)N (α+1)/2eN I(a | b+)eN
αIX(b+) > γ(a) · b+

a− b+
.

We proceed by the upper bound. Evidently,

PN (a) =

∫ b+

b+−Nδ

ψN (a |x)P
(
XNα ∈ dx

)
+

∫ b+−Nδ

0
ψN (a |x)P

(
XNα ∈ dx

)
.



10 MARISKA HEEMSKERK, JULIA KUHN, MICHEL MANDJES

The first integral in the previous display can be dealt with as in the upper bound (mutatis mutandis;
e.g. the factor 1 − ζ becomes 1 + ζ, and the ui need to be used rather than the `i). We therefore
focus on the second integral, which is clearly bounded above by ψN (a | b+ − N δ). Now observe
that

I(a | b+)− I(a | b+ −N δ) = a log

(
b+ −N δ

b+

)
+N δ 6

(
1− a

b+

)
N δ = β1,1N

δ.

As a consequence, as N →∞, recalling that δ > α− 1 and β1,1 < 0,

eN I(a | b+)eN
αIX(b+)ψN (a | b+ −N δ) 6 eβ1,1N

δ+1
eN

αIX(b+) → 0.

We conclude the interval [0, b+ −N δ) does not contribute to the asymptotics. We thus have estab-
lished the upper bound, leading to the following result.

Proposition 2.3. Assume α < 1 and b+ < a. Then

lim
N→∞

PN (a) ∼ e−N I(a | b+)e−N
αIX(b+)N−(α+1)/2γ(a)

b+
a− b+

,

where γ(a) := C(a | b+)CX(b+)I ′X(b+).

Remark 5. As before, we can identify the asymptotics of pN (a) as well:

pN (a) ∼ e−N I(a | b+)e−N
αIX(b+)N−(α+1)/2 · γ(a) · b+

a− b+

(
1− e−I

′(a | b+)
)

as N →∞. ♦

2.3. Intermediate range. We finally consider the case α = 1. The random variable Pois(NXNα)

is distributed as the sum of N i.i.d. contributions, each of them distributed as Z := Pois(X).
Assuming that maximum in the definition (10) of IZ(a) is attained at ϑ?Z , the Bahadur-Rao result
yields, as N →∞,

PN (a) ∼ e−NIZ(a)CZ(a)√
N

,

where now

CZ(a) :=
1

1− eϑ
?
Z

1√
2πΛ′′Z(ϑ?Z)

=
1

1− eϑ
?
Z

1√
2π
(
eϑ

?
ZΛ′X

(
eϑ

?
Z − 1

)
+ e2ϑ?ZΛ′′X

(
eϑ

?
Z − 1

))
=

1

1− eϑ
?
Z

1√
2π
(
a+ e2ϑ?ZΛ′′X

(
eϑ

?
Z − 1

)) .
Based on the same arguments as in Remark 2 we infer that

pN (a) ∼ 1√
2πN

(
a+ e2ϑ?ZΛ′′X

(
eϑ

?
Z − 1

)) e−NIZ(a) .

3. ASYMPTOTICS OF PN (a): SPECIAL CASE OF GAMMA Xi’S

In this section we consider the special case that the Xi s are i.i.d. samples from the gamma dis-
tribution. The use of this specific mixed Poisson distribution for call center staffing purposes is
advocated in e.g. [11]. In the analysis, this can be reduced to the case where the Xi s are exponen-
tially distributed with parameter λ (i.e., mean λ−1), see Remark 7.

To start the exposition, we note that if theXi s are exponential with parameter λ, then
∑Nα

i=1Xi has
a gamma distribution with parameters Nα and λ. The objective of this section is to evaluate the
asymptotics of pN (a) across all values of α; later we comment on what the corresponding PN (a)

looks like. We assume throughout that a is larger than λ−1. The computations are facilitated by
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the fact that an exact expression for pN (a) is available. It takes a routine calculation, which we
include for completeness, to compute pN (a):

pN (a) =

∫ ∞
0

(N1−αx)Na

(Na)!
e−(λ+N1−α)x λN

α

(Nα − 1)!
xN

α−1 dx

=
(N1−α)Na

(Na)!

λN
α

(Nα − 1)!

∫ ∞
0

e−(λ+N1−α)xxNa+Nα−1 dx

=
(Na+Nα − 1)!

(Na)!(Nα − 1)!

(N1−α)NaλN
α

(λ+N1−α)Na+Nα

∫ ∞
0

(λ+N1−α)N
α

(Na+Nα − 1)!
e−(λ+N1−α)xxNa+Nα−1 dx

=

(
Na+Nα − 1

Na

)(
N1−α

λ+N1−α

)Na( λ

λ+N1−α

)Nα

.

Remark 6. We recognize here the probability that a negative binomially distributed random variable
with success probability p := N1−α/(λ+N1−α) attains Na successes before Nα failures have
occurred. This can be understood as follows. Note that a Poisson random variable with parameter
xT represents the number of Exp(x) “success clocks” expiring within a period of length T . In our
case the rate of the success clocks is x = N1−α and the length of the period corresponds to the
time it takes for N exponential “failure clocks” of rate λ to expire, that is, we have T =

∑Nα

i=1Xi.
Thus, pN (a) is the probability that Na success clocks expire before the Nαth failure clock expires
and the period ends. The success probability is indeed given by p as it is the probability that the
next Exp(N1−α) success clock expires before a Exp(λ) failure clock. ♦

Remark 7. In the above setup we considered exponentially distributed Xi s. Note, however, that
our analysis only relies on

∑Nα

i=1Xi having a gamma distribution, and thus can easily be extended
to the practically relevant case [11] that the Xi s are i.i.d. samples from a gamma distribution. It
is noted that the gamma distribution has two parameters (as opposed to the exponential distri-
bution), and therefore allows for more modelling flexibility (e.g., the mean and variance can be
fitted). ♦

As a first step in deriving the exact asymptotics of pN (a), we approximate the binomial coefficients
by applying Stirling’s formula, which says that n! ∼

√
2πnnne−n. As a consequence we find that(

Na+Nα − 1

Na

)
∼ 1√

2π

√
Na+Nα − 1√
Na
√
Nα − 1

(Na+Nα − 1)Na+Nα−1

(Na)Na(Nα − 1)Nα−1

Applying this in the expression for pN (a) then yields

pN (a) =

(
Na+Nα − 1

Na

)(
N1−α

λ+N1−α

)Na( λ

λ+N1−α

)Nα

∼ 1√
2π

√
Na+Nα − 1√
Na
√
Nα − 1

(Na+Nα − 1)Na+Nα−1

(Na)Na(Nα − 1)Nα−1

(
N1−α

λ+N1−α

)Na( λ

λ+N1−α

)Nα

=
1√
2π

√
Nα − 1√

Na
√
Na+Nα − 1

·
(
Na+Nα − 1

aλ(Nα + N
λ )

)Na
·
(

λ(Na+Nα − 1)

(λ+N1−α)(Nα − 1)

)Nα

. (17)

In order to determine the asymptotic behavior of this expression for large N , we again consider
the three regimes separately. We do so by evaluating the three factors in (17).

3.1. Fast regime. We start by examining the case α > 1. For the first factor we have

1√
2π

√
Nα − 1√

Na
√
Na+Nα − 1

∼ 1√
2π

1√
Na

.
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The middle factor can be addressed as follows. For ease we analyze its logarithm:

Na log

(
Na+Nα − 1

aλ(Nα +N/λ)

)
= −Na log(aλ) +

Na log
(
1 +N1−αa−N−α

)
−Na log

(
1 +N1−α/λ

)
(18)

For the last factor we similarly obtain

Nα log

(
λ(Na+Nα − 1)

(λ+N1−α)(Nα − 1)

)
= Nα log(1 +N1−αa−N−α)−

Nα log

(
1 +

1

λ
N1−α − 1

λ
N1−2α −N−α

)
(19)

Define k := (α − 1)−1 and k+ := bkc. The logarithms can be expanded relying on their standard
Taylor series form, but it can be argued that the resulting infinite series can be truncated. For
instance,

Na log
(
1 +N1−αa−N−α

)
= Na

∞∑
k=1

(−1)k+1

k
(N (1−α)a−N−α)k ∼ Na

k+∑
k=1

(−1)k+1ak

k
N (1−α)k.

Likewise,

Na log
(
1 +N1−α/λ

)
∼ Na

k+∑
k=1

(−1)k+1λ−k

k
N (1−α)k.

We thus find that (18) asymptotically equals

−Na log(aλ) +Na

k+∑
k=1

(−1)k(λ−k − ak)
k

N (1−α)k.

For the last factor, note that from k+ + 1 on all terms vanish, leaving us with

Nα log(1 +N1−αa−N−α) ∼ Nα

k++1∑
k=1

(−1)k+1ak

k
N (1−α)k − 1,

Nα log(1 +N1−α/λ−N1−2α/λ−N−α) ∼ Nα

k++1∑
k=1

(−1)k+1λ−k

k
N (1−α)k − 1.

After a bit of rewriting, we conclude that (19) equals

N

k+∑
k=0

(−1)k(ak+1 − λ−(k+1))

k + 1
N (1−α)k.

Defining

ξ0 := −a log(λa) + a− 1

λ
, ξk := (−1)k

(
λ−k

(
a

k
− 1/λ

k + 1

)
− ak+1

(
1

k
− 1

k + 1

))
,

we conclude that in case α > 1,

pN (a) ∼ 1√
2πaN

eξ0N exp

 k+∑
k=1

ξkN
(1−α)k+1

 .

In particular, if α > 2, then the last factor equals 1 (the empty sum being defined as 0). It is not
hard to check that this result agrees with what has been found for α > 3 in Section 2.
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3.2. Slow regime. If α < 1, then the first factor behaves as

1√
2π

√
Nα − 1√

Na
√
Na+Nα − 1

∼ 1√
2π

1

a
Nα/2−1 .

For the logarithm of the middle factor we now have

Na log

(
Na+Nα − 1

aλ(Nα +N/λ)

)
= Na log

(
1 +

1

a
(Nα−1 −N−1)

)
−Na log

(
1 + λNα−1

)
. (20)

With k̃ := α(1− α)−1 and k− := bk̃c, we obtain that this factor asymptotically equals

Na

k−+1∑
k=1

(−1)k+1(a−k − λk)
k

N (α−1)k − 1 = Na

k−∑
k=0

(−1)k(a−(k+1) − λk+1)

k + 1
N (α−1)(k+1) − 1 .

For the last factor we find

Nα log

(
λ(Na+Nα − 1)

(λ+N1−α)(Nα − 1)

)
= Nα log (λa) +Nα log

(
1 +

1

a
Nα−1 − 1

a
N−1)

)
−Nα log

(
1 + λNα−1 − λN−1 −N−α

)
where

Nα log

(
1 +

1

a
Nα−1 − 1

a
N−1

)
∼ Nα

k−∑
k=1

(−1)k+1

k
a−kN (α−1)k ,

Nα log
(
1 + λNα−1 − λN−1 −N−α

)
∼ Nα

k−∑
k=1

(−1)k+1

k
λkN (α−1)k − 1 .

Combining the above we conclude

pN (a) ∼ 1√
2πa

N
α
2
−1 eζ0N

α
exp

 k−∑
k=1

ζkN
(α−1)k+α

 , (21)

where

ζ0 := log(λa) + 1− λa , ζk := (−1)k
(
λk
(

1

k
− aλ

k + 1

)
− a−k

(
1

k
− 1

k + 1

))
.

It can again be verified that this result coincides for α < 1
3 with the one derived in Section 2.

3.3. Intermediate regime. For completeness, we also include the result for the case α = 1. We
find

pN (a) ∼ 1√
2π

1√
Na(a+ 1)

exp

(
−N

(
a log

(
a

1 + λ

1 + a

)
+ log

(
1

λ

1 + λ

1 + a

)))
. (22)

It is noted that the asymptotics of PN (a) and pN (a) could have been found by applying the
Bahadur-Rao result directly, as noted in Section 2.3:

PN (a) ∼ 1

1− eϑ
?
Z

1√
2πNΛ′′Z(ϑ?Z)

e−NIZ(a) =
1

1− a 1+λ
1+a

1√
2πNa(a+ 1)

e−NIZ(a) .

and

pN (a) = PN (a)− PN
(
a+

1

N

)
∼ 1√

2πNa(a+ 1)
e−NIZ(a) ,

where it can be verified that IZ(a) coincides with the exponent found in (22).
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3.4. Example. In Fig. 1 we illustrate the accuracy of the approximation, by displaying the ratio of
the approximation p̃N (a) and the exact expression for pN (a). We observe that this ratio tends to 1
as N grows, as expected.
Note that the naive approximation pN (a) ≈ exp

(
− NαIX(a)

)
obtained from the logarithmic

asymptotics is still very far off the true value for the small values N considered in this exam-
ple. For example, with α < 1 the ratio is as high as

√
2πaN1−α/2p̃N (a)/pN (a) (cf. (21)). This shows

how important it can be to consider exact asymptotics instead of logarithmic asymptotics.

0 10 20 30 40
1

1.01

1.02

1.03

N

p̃
N
(a
)/ p N

(a
)

(A) Fast regime, α = 5.

0 20 40 60 80 100 120 140 160

0.92

0.94

0.96

0.98

1

N

p̃
N
(a
)/ p N

(a
)

(B) Slow regime, α = 1
5 .

FIGURE 1. Ratio of approximation p̃N (a) and exact value pN (a), where Xi is expo-
nentially distributed with parameter λ = 2.5 and a = 1.

4. IMPORTANCE SAMPLING FOR PN (a)

In the previous sections we found exact asymptotics for the rare-event probabilities pN (a) and
PN (a) for (i) a specific range of α, and (ii) for the specific case that the Xi are exponentially dis-
tributed. To facilitate numerical evaluation (which we need, for example, if (i) and (ii) do not
apply), we propose in this section importance sampling estimators for pN (a) and PN (a). We es-
tablish asymptotic efficiency properties, thus guaranteeing fast computation even for large N . As
before, we distinguish the cases α < 1 and α > 1; the case α = 1 can be addressed by using a
classical importance sampling procedure.

4.1. Fast regime. Recall that in this regime a rare event is typically the result of a large deviation
of the Poisson random variable, while the sample mean X1, . . . , XNα will typically be close to ν
(under their true distribution, which we shall indicate by a subscript ν). In view of this, we pro-
pose a somewhat unconventional importance sampling estimator (cf. the more classical estimator
(26) that we will come across in the slow regime). Based on n ∈ N runs, P (n)

N (a) can be unbiasedly
estimated by

P̂
(n)
N (a) =

1

n

n∑
i=1

P
(
Pois

(
NXNα,i

)
= Zi

)
P (Pois(Na) = Zi)

1 {Zi ≥ Na} , (23)

where (i) Z1, . . . , Zn ∼ Pois(Na) (independently sampled), and (ii) XNα,1, . . . ,XNα,n indepen-
dently sampled under the original measure.
Observe that the contribution from the ith run depends onXNα,i as well as Zi. It is therefore easier
to analyze the corresponding estimator for pN (a),

p̂
(n)
N (a) :=

1

n

n∑
i=1

P
(
Pois

(
NXNα,i

)
= Zi

)
P (Pois(Na) = Zi)

1 {Zi = Na} ,
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which does not depend on the specific value of Zi (as it is Na with certainty). We later comment
on efficient estimation of PN (a).
The contribution due to the likelihood ratio of the ith run is

L
(
XNα,i

)
:=

(
XNα,i

a

)Na
eN(a−XNα,i) .

The variance of the estimator (with respect to the joint distribution of Z ∼ Pois(Na) andXNα) can
be evaluated to be

1

n
E
[(
L
(
XNα

)
1 {Z = Na}

)2]− pN (a)2 =
1

n
E
[
L2
(
XNα

)
1 {Z = Na}

]
− pN (a)2 , (24)

with Z distributed as each of the Zi, and XNα as each of the XNα,i. As we have seen in the intro-
duction of Section 2, the logarithmic decay rate of pN (a)2 is−2I(a | ν). Since the variance is always
non-negative, this implies that the first term in (24) vanishes no faster than with exponential rate
−2 I(a | ν). This motivates the following notion of asymptotic efficiency (or logarithmical efficiency),
as suggested in e.g. [16].

Proposition 4.1. The estimator p̂(n)
N (a) is asymptotically efficient for estimating pN (a); that is

lim sup
N→∞

1

N
logE

[
L2
(
XNα

)
1 {Z = Na}

]
6 −2I(a | ν) .

Proof. First, note that

E
[
L2
(
XNα

)
1 {Z = Na}

]
= Eν

(XNα

a

)2Na

e2N(a−XNα )

P(Z = Na)

6 Eν

(XNα

a

)2Na

e2N(a−XNα )

 .
Define F

(N)
ε :=

{
XNα ∈ (ν − ε, ν + ε)

}
, where ε > 0. Then

Eν

(XNα

a

)2Na

e2N (a−XNα )
1

{
F (N)
ε

} 6 (ν + ε

a

)2Na

e2N(a−ν+ε) . (25)

On the other hand, we have

Eν

(XNα

a

)2Na

e2N (a−XNα )
1

{(
F (N)
ε

)c} = Eν
[
e−2NI

(
a
∣∣XNα

)
1

{(
F (N)
ε

)c}]
6 P

([
F (N)
ε

]c)
.

where the last inequality is due to I(a |x) ≥ 0 for any x. Invoking Chernoff’s bound, we note that

P
([

F (N)
ε

]c)
6 2 exp (−Nαjε) , where jε := inf

x 6∈(ν−ε,ν+ε)
IX(x) > 0.

We conclude that for α > 1,

lim sup
N→∞

Nα

N

1

Nα
logP

([
F (N)
ε

]c)
6 lim sup

N→∞
−N

α

N
jε = −∞ .

Combining this with (25), we conclude that

lim sup
N→∞

1

N
logE

[(
L
(
XNα

)
1 {Z = Na}

)2]
6 2a log

(
ν + ε

a

)
+ 2(a− ν + ε).

The desired result follows when taking ε ↓ 0. �
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Formally, this result on asymptotic efficiency for p̂(n)
N (a) does not imply asymptotic efficiency for

P̂
(n)
N (a). In practice, however, we can use

P̂
(n)
N (a) =

K∑
k=Na

p̂
(n)
N (k/N),

with K sufficiently large, to estimate P (n)
N (a).

4.2. Slow regime. In the slow regime, assuming that b+ ≥ a, the rare event is typically caused by
a large deviation ofXNα . Suppose thatXNα,1, . . . ,XNα,n are independently sampled according to
the original measure Pν (where the subscript indicates that the expectation of each of the sample
meansXNα,i involved is ν). In this case we suggest the estimator

P̂
(n)
N (a) =

1

n

n∑
i=1

Pν
(
XNα,i ∈ dYi

)
Pa
(
XNα,i ∈ dYi

) 1 {Pois (NYi) ≥ Na} , (26)

where Y1, . . . , Yn ∼ Pa. The measure Pa corresponds to the exponentially twisted version such
that the mean becomes a (rather than ν).
For each run we have the likelihood ratio, with ~y = (y1, . . . , yNα),

L(~y ) =
Nα∏
i=1

MX(ϑa) e−ϑayi ,

where we recall that MX(·) is the moment-generating function of X and ϑa is the unique solution
to

Ea[X] = Eν
[
X

eϑX

MX(ϑ)

]
=
M ′X(ϑ)

MX(ϑ)
= a .

In this case we have seen before that N−α logPN (a)→ −IX(a) as N →∞.

Proposition 4.2. The estimator P̂ (n)
N (a) is asymptotically efficient for estimating PN (a); that is

lim sup
N→∞

1

Nα
logEa

[(
L( ~X )1

{
Pois

(
NXNα

)
≥ Na

})2
]
6 −2IX(a) .

Proof. Note that

Ea
[(
L( ~X)1

{
Pois

(
NXNα

)
≥ Na

})2
]

= M(ϑa)
2Nα

Ea
[
e−2ϑaNαXNα1

{
Pois

(
NXNα

)
≥ Na

}]
.

On F
(N)
ε :=

{
XNα ∈ (a− ε,∞)

}
we have

Ea
[
e−2ϑaNαXNα1

{
Pois

(
NXNα

)
≥ Na

}
1

{
F (N)
ε

}]
6 e−2ϑaNα(a−ε),

while outside of F
(N)
ε we have

Ea
[
e−2ϑaNαXNα1

{
Pois

(
NXNα

)
≥ Na

}
1

{[
F (N)
ε

]c}]
6 Pa (Pois (N(a− ε)) ≥ Na) ,

where we used that ϑa > 0 because a > ν [7, Lemma 2.2.5]. By virtue of the Chernoff bound,

Pa (Pois (N(a− ε)) ≥ Na) ≤ e−NI(a | a−ε), where I(a | a− ε) > 0.

This implies that

lim sup
N→∞

1

Nα
logEa

[
e−2ϑaNαXNα1

{
Pois

(
NXNα

)
≥ Na

}
1

{[
F (N)
ε

]c}]
6 lim sup

N→∞
− N

Nα
I(a | a− ε) = −∞.
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We let first N →∞ and then ε ↓ 0, to conclude that

lim sup
N→∞

1

Nα
logEa

[(
L( ~X)1

{
Pois

(
NXNα

)
≥ Na

})2
]
6 2 logMX(ϑa)− 2ϑaa = −2IX(a) ,

as claimed. �

4.3. Numerical example. We provide a numerical example with exponentially distributed Xi.
Specifically, we considerXi ∼ Exp(1), a = 2, and α ∈ {0.5, 2}. Fig. 2 shows the logarithm of P̂N (a)

as well as the corresponding crude Monte Carlo estimators, as a function of N . We generated∑Nα

i=1Xi by drawing from the gamma distribution with parameters Nα and 1/λ. This allowed us
to include values of N for which Nα /∈ N in Fig. 2.(B). The dotted lines in the figures indicate the
upper bounds of the standard normal 95% confidence intervals evaluated using sample standard
deviations (multiplied by a factor 103 to make them visible). It can be seen that for the importance
sampling estimator the width of the confidence interval hardly depends on N . In contrast, for the
Monte Carlo estimator the width of the confidence interval increases significantly.

5. ASYMPTOTICS FOR INFINITE-SERVER SYSTEM, AND IMPLICATIONS FOR STAFFING

In this section we investigate the asymptotic behavior of QN (a) (qN (a)), the probability that the
number of clients in the system exceeds (equals) some threshold Na. We consider the scaled
system previously studied in [9].
We start by presenting the logarithmic asymptotics, which can be identified with exactly the same
techniques as in [9, Section 4.1]. As before, we distinguish three cases (where it is noted that
qN (a) has the same logarithmic asymptotics as QN (a)); the intuition behind the three regimes is
as before.

◦ For α > 1,

lim
N→∞

1

N
logQN (a) = −I

(
a

∣∣∣∣ ν ∫ 1

0
F(x)dx

)
,

where F(·) denotes the complementary distribution function of the service times.

5 10 15 20
10−5

10−4
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10−1
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N
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))
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(A) Fast regime, α = 2.
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10−5
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10−2
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100
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( P̂

N
(a
))

IS
MC

(B) Slow regime, α = 0.5.

FIGURE 2. Logarithmic importance sampling (IS) and crude Monte Carlo (MC)
estimators for PN (a), where Xi is exponentially distributed with parameter λα
(where λ2 = 1, λ0.5 = 2.5) and a = 2, averaged over n = 107 samples. The up-
per bounds of the sample confidence intervals are indicated by dashed lines; the
width of the intervals is inflated by a factor 103 for better visibility.
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◦ For α < 1, assuming the support of Xi is unbounded,

lim
N→∞

1

Nα
logQN (a) = − sup

ϑ

(
ϑa−

∫ 1

0
ΛX

(
ϑF(x)

)
dx

)
.

◦ For α = 1,

lim
N→∞

1

N
logQN (a) = − sup

ϑ

(
ϑa−

∫ 1

0
ΛX

(
(eϑ − 1)F(x)

)
dx

)
. (27)

In the remainder of this section, we first determine the exact asymptotics for the special case α = 1.
That is, we assume that the arrival rates are resampled every 1/N time units, and we are interested
in the number of customers present at time 1 (that is, after N time periods of length 1/N ). As it
turns out, the case α 6= 1 is considerably harder to deal with, and therefore left for future research.
We conclude this section by a set of numerical experiments.

5.1. Exact asymptotics. As mentioned in the introduction (viz. Eqn. (1)), under the scaling of [9]
the number of clients in the system at time 1 is distributed as the sum of N Poisson random
variables, say, Z1 up to ZN , where Zi can be interpreted as the contribution due to arrivals in the
interval [(i− 1)/N, i/N); for details we refer to [9]. Then it can be argued that

Zi
d
= Pois

(
NXi ·N−1ωi(N)

)
= Pois (Xi ωi(N)) ,

where we defined ωi(N) as the probability that a call that arrived at a uniform epoch in the interval
[(i− 1)/N, i/N) is still present at time 1. It can be verified that

ωi(N) = N

∫ i/N

(i−1)/N
F(1− x)dx;

because the Xi are i.i.d., we can reverse time, and hence replace F(1 − x) in the previous display
by F(x).

We now wish to evaluate

QN (a) = P

(
Pois

(
N∑
i=1

Xi ωi(N)

)
> Na

)
, qN (a) = P

(
Pois

(
N∑
i=1

Xi ωi(N)

)
= Na

)
.

Let SN =
∑N

i=1 Zi, where Zi
d
= Pois (X ωi(N)) , with the Zi independent; hence qN (a) = P(SN =

Na). It is immediately verified that, with MX(·) the moment generating function of the Xi,

E
[
eϑSN

]
=

N∏
i=1

MX

(
ωi(N)(eϑ − 1)

)
. (28)

Bearing in mind (27), we define

ϑ? := arg sup
ϑ

{
ϑa−

∫ 1

0
ΛX

(
F(x)(eϑ − 1)

)
dx

}
.

The idea is now that we construct a measure Q, under which the event of interest is not rare so
that a central limit theorem applies. Concretely, we choose Q to be an ϑ?-twisted version of the
original measure such that SN has moment generating function (cf. (28))

EQ

[
eϑSN

]
=

N∏
i=1

MX

(
ωi(N)(eϑ+ϑ? − 1)

)/ N∏
i=1

MX

(
ωi(N)(eϑ

? − 1)
)
. (29)

As a consequence, qN (a) = EQLIN ,with the indicator function IN := 1{SN=Na} and the likelihood
ratio

L := e−ϑ
?SN

N∏
i=1

MX

(
ωi(N)(eϑ

? − 1)
)
.
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It thus follows that

qN (a) = e−ϑ
?Na

(
N∏
i=1

MX

(
ωi(N)(eϑ

? − 1)
))

Q(SN = Na).

We now point out how to evaluate the middle factor in the previous display (i.e., the product),
namely, we check that asymptotically this middle factor behaves as

exp

(
N

∫ 1

0
ΛX
(
τF(x)

)
dx

)
, (30)

with τ := eϑ
? − 1. The logarithm of the middle factor is

N∑
i=1

ΛX
(
τωi(N))

)
=

N∑
i=1

ΛX

(
τN

∫ i/N

(i−1)/N
F(x)dx

)
,

where, by a Taylor expansion of F ,

N

∫ i/N

(i−1)/N
F(x)dx = F

(
i− 1

N

)
+

1

2N
F ′
(
i− 1

N

)
+O

(
1

N2

)
.

As a consequence, from a Taylor expansion of ΛX(·) we have
N∑
i=1

ΛX
(
τωi(N)

)
=

N∑
i=1

ΛX

(
τF

(
i− 1

N

))
+

τ

2N

N∑
i=1

F ′
(
i− 1

N

)
Λ′X

(
τF

(
i− 1

N

))
+O

(
1

N

)
,

where, as N →∞,

τ

2N

N∑
i=1

F ′
(
i− 1

N

)
Λ′X

(
τF

(
i− 1

N

))
→ τ

2

∫ 1

0
F ′(x) Λ′X

(
τF(x)

)
dx

=
1

2

(
ΛX
(
τF(1)

)
− ΛX

(
τF(0)

))
,

provided that F(·) is twice differentiable on [0, 1] (recognize the left Riemann sum approximation).
Now recall the trapezoidal rule version of the Riemann sum approximation, that holds for any
Riemann-integrable G(·):

1

N

N∑
i=1

G(i/N) =

∫ 1

0
G(x)dx+

1

2N
(G(1)−G(0)) +O

(
1

N2

)
.

Since ΛX is Riemann integrable on [0, 1], this can be applied to yield

N

∫ 1

0
ΛX
(
τF(x)

)
dx =

N∑
i=1

ΛX

(
τF

(
i

N

))
− 1

2

(
ΛX
(
τF(1)

)
− ΛX

(
τF(0)

))
+O

(
1

N

)

=
N∑
i=1

ΛX

(
τF

(
i− 1

N

))
+

1

2

(
ΛX
(
τF(1)

)
− ΛX

(
τF(0)

))
+O

(
1

N

)
.

We have thus arrived at

qN (a) ∼ e−ϑ
?Na exp

(
N

∫ 1

0
ΛX
(
F(x)(eϑ

? − 1)
)
dx

)
Q(SN = Na).

We are left to evaluate Q(SN = Na). We do so by first proving the claim that, under Q, SN obeys
a central limit theorem: as N →∞,

SN −Na√
N

converges to a zero-mean Normal random variable. Recall from (29) that we have

logEQ eϑSN =
N∑
i=1

ΛX

(
ωi(N)(eϑ+ϑ? − 1)

)
−

N∑
i=1

ΛX

(
ωi(N)(eϑ

? − 1)
)
.
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In order to establish that SN satisfies the anticipated central limit theorem, we prove that ΨN (ϑ) :=

logEQ eϑSN/
√
N − ϑa

√
N → 1

2σ
2ϑ2, for some σ2 > 0. This is done as follows. Observe that we can

write the logarithmic moment generating function ΨN (ϑ) as

N∑
i=1

ΛX

(
ωi(N)

(
eϑ

? − 1 +
(

eϑ
?
(eϑ/

√
N − 1)

)))
−

N∑
i=1

ΛX

(
ωi(N)(eϑ

? − 1)
)
− ϑa

√
N.

By applying a Taylor expansion to eϑ/
√
N−1, this can be written as (neglecting higher order terms)

N∑
i=1

ΛX

(
ωi(N)

(
eϑ

? − 1 +

(
eϑ

?

(
ϑ√
N

+
ϑ2

2N

))))
−

N∑
i=1

ΛX

(
ωi(N)(eϑ

? − 1)
)
− ϑa

√
N.

This can be expanded to, up to terms that are o(1) as N →∞,

N∑
i=1

[
Λ′X

(
ωi(N)(eϑ

? − 1)
)
ωi(N)eϑ

?

(
ϑ√
N

+
ϑ2

2N

)

+
1

2
Λ′′X

(
ωi(N)(eϑ

? − 1)
)
ωi(N)2e2ϑ? ϑ

2

N

]
− ϑa

√
N.

(31)

Now note that, similar to what we have seen before,

1

N

N∑
i=1

Λ′X

(
ωi(N)(eϑ

? − 1)
)
ωi(N) eϑ

?
=

∫ 1

0
Λ′X
(
F (x) (eϑ

? − 1)
)
F(x) eϑ

?
dx+O

(
1

N

)
,

where the integral equals a by the definition of ϑ?. We conclude that (31) converges to 1
2σ

2ϑ2 as
N →∞, where the corresponding variance is given by

σ2 :=

∫ 1

0
Λ′X
(
F(x)(eϑ

? − 1)
)
F(x) eϑ

?
dx+

∫ 1

0
Λ′′X
(
F(x)(eϑ

? − 1)
)
F 2(x) e2ϑ?dx

= a+

∫ 1

0
Λ′′X
(
F(x)(eϑ

? − 1)
)
F 2(x) e2ϑ?dx.

We have thus established that, under Q, SN satisfies the claimed central limit theorem. It directly
implies that, by applying the usual continuity correction idea, Q(SN = Na) behaves inversely
proportionally to

√
N in the sense that

√
N Q(SN = Na) ∼

√
N P

(
N (0, σ2) ∈

(
− 1

2
√
N
,

1

2
√
N

))
→ 1√

2πσ
.

Upon combining the above, we conclude that the following asymptotic relationship holds.

Proposition 5.1. As N →∞, if F(·) is twice differentiable on [0, 1],

qN (a) ∼ q̃N (a) := e−ϑ
?Na exp

(
N

∫ 1

0
ΛX
(
F(x)(eϑ

? − 1)
)
dx

)
1√

2πNσ
.

Similar to Remark 2, we can convert the asymptotics of qN (a) into those of QN (a). More precisely,
it can be argued thatQN (a) has the same asymptotics as qN (a), except that the expansion for qN (a)

should be divided by 1 − e−ϑ
?

(which is smaller than 1). Note also that for the case F(·) ≡ 1 we
indeed recover the expression that we provided in Section 2.3. Furthermore, it is easily verified
that if P(Xi = λ) = 1 (so the arrival rates are deterministic), the approximation we obtained in
Prop. 5.1 coincides with that of the transient distribution of an M/G/∞ queue. With %(1) :=

λ
∫ 1

0 F(x)dx, recall that the number of customers present at time 1 is Poisson with mean %(1). By
applying Stirling’s approximation, and using that ϑ? = log(a/%(1)),

qN (a) = (N%(1))Na e−N%(1) 1

(Na)!
∼
(
%(1)

a

)Na
eN(a−%(1)) 1√

2πNa
= q̃N (a).
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5.2. Numerical example. We consider the following numerical example, which illustrates how
Prop. 5.1 can be useful in devising staffing rules with possible applications in cloud provisioning,
call center staffing or the design of data centers. Per time slot of length 1 time unit (which we refer
to as ∆) a new arrival rate is sampled from a given distribution with a mean such that on average
λ clients arrive in the time slot of length ∆. The service times have a fixed mean E.
Let us assume the system starts empty, say at 8 AM. Suppose we wish to determine an appropriate
staffing rule for slot 100 (evidently, any other slot for which we wish to adapt staffing levels can
be dealt with analogously). Then we choose N = 100 (recall the way we normalized time), and
after scaling we have E[NXi∆] = λ (as N∆ = 1). Suppose the service facility wishes to maintain
a rather strict quality level; its objective is to choose the number of servers in slot 100 to be bNac
(or, alternatively, dNae), where a is the smallest number such that QN (a) drops below ε.
For the service times we consider the following three distributions:

◦ In the first place, we assume that the service times are exponential with mean service time
E, that is, F(x) = e−x/E .
◦ A second choice is to assume that the service times are deterministically equal to E, that is

we define F(x) = 1{x < E}.
◦ A third choice is to assume that the service times have a Pareto(2) distribution with mean
E, that is, F(x) = (1 + x/E)−2.

As indicated in the introduction, in practice arrival rates for modeling call centers are typically not
constant over time, but may be fluctuating around some mean value [11]. We assume that arrival
rates follow a Poisson distribution in Section 5.2.1. In Section 5.2.2 we consider discrete arrival
rates alternating between two values (corresponding to busy and quiet periods), motivated by
applications in cloud computing, where the workload of virtual machines exhibits such bursty
behaviour [20].

5.2.1. Poisson arrival rates. In this example we take Xi ∼ Pois(λ). We then have

ΛX(ϑ) = λ
(
eϑ − 1

)
; Λ′X(ϑ) = Λ′′X(ϑ) = λ eϑ.

To compute ϑ? and σ2, we evaluate∫ 1

0
ΛX

(
F(x)(eϑ − 1)

)
dx =

∫ 1

0
λ
(

exp
(
F(x)(eϑ − 1)

)
− 1
)

dx

and ∫ 1

0
λ exp

(
F(x)(eϑ

? − 1)
)
F 2(x) e2ϑ?dx

by numerical integration. Inserting the resulting quantities into the formula provided in Prop. 5.1,
we can compute the approximation Q̃N (a) as q̃N (a)(1−e−ϑ?)−1 for various a. Consider Fig. 3 for a
comparison of Q̃N (a) with the corresponding estimators Q̂N (a) that are obtained by crude Monte
Carlo estimation of the probability QN (a) as defined in (2).
We then proceed to find the value of a, denoted by a(ε), for which we have |Q̃N (a) − ε| < 10−9

using a bisection method. The results are displayed in Table 1; together with M1, the expected
number of customers present at time 1; the Monte Carlo estimates Q̂N

(
a(ε)

)
; and the values of

Q̃N (a) and Q̃N (a), where a and a are such that the number of servers is integer-valued: Na =

bNa(ε)c and Na = dNa(ε)e. Surprisingly, the results we obtain for a(ε) and M1 suggest that
the number of servers required decreases as the variability of the service distribution increases:
a relatively small number of servers suffices when service times are Pareto(2), whereas a large
number of servers is required for deterministic service times.
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(A) Q̂N (a) (solid line) vs. Q̃N (a) (dashed line).
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FIGURE 3. Comparison of crude Monte Carlo estimators Q̂N (a) and the approxi-
mation Q̃N (a) as provided in Prop. 5.1. Parameters are chosen as a = 0.2, λ = 0.1,
E = 1.

TABLE 1. Values of a(ε) needed to achieve |Q̃N

(
a(ε)

)
− ε| < 10−9 with N = 100, expected

arrival rate λ = 2, and mean service time E. The Monte Carlo estimates Q̂N

(
a(ε)

)
are also

provided (based on 109 runs) together with CI, the width of the standard normal 95% con-
fidence interval, as well as the values of the approximation Q̃N (a) with a (a, respectively)
such that Na = bNac (Na = dNae, respectively). The inferred number of servers is Na,
which should be larger than the expected number of customers M1 at time 1.

F ε E a (ε) Na dM1e 1
ε

[
Q̂N (a (ε))± CI

2

]
1
ε

(
Q̃N (a), Q̃N (a)

)

Ex
po

ne
nt

ia
l 10−3

0.05 0.2516 26 10 0.5568± 0.0015 (1.1009, 0.6033)

0.5 1.2602 127 87 0.7215± 0.0017 (1.0053, 0.7802)

1 1.7537 176 127 0.8099± 0.0018 (1.0784, 0.8780)

10−4

0.05 0.2885 29 10 0.8436± 0.0057 (1.7277, 0.9039)

0.5 1.3460 135 87 0.8380± 0.0057 (1.1858, 0.8921)

1 1.8587 186 127 0.9122± 0.0059 (1.2238, 0.9702)

D
et

er
m

in
is

ti
c 10−3

0.05 0.2782 28 10 0.8382± 0.0018 (1.4983, 0.9133)

0.5 1.4809 149 100 0.7645± 0.0017 (1.0185, 0.8279)

1 2.6636 267 200 0.8353± 0.0018 (1.0565, 0.9070)

10−4

0.05 0.3223 33 10 0.6146± 0.0049 (1.1319, 0.6547)

0.5 1.5857 159 100 0.8463± 0.0057 (1.1407, 0.9036)

1 2.8048 281 200 0.8590± 0.0057 (1.0869, 0.9136)

Pa
re

to
(2

) 10−3

0.05 0.2350 24 10 0.6630± 0.0016 (1.3845, 0.7229)

0.5 1.0074 101 67 0.8559± 0.0018 (1.2375, 0.9268)

1 1.4250 143 100 0.8224± 0.0018 (1.1252, 0.8894)

10−4

0.05 0.2688 27 10 0.5721± 0.0057 (1.8616, 0.9194)

0.5 1.0818 109 67 0.7223± 0.0053 (1.0613, 0.7633)

1 1.5167 152 100 0.8642± 0.0058 (1.1959, 0.9164)
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At first sight, this outcome may seem counter-intuitive: one would perhaps have expected that
unsteady service times would imply that more servers are needed. It is, however, easy to see
that this conclusion is not necessarily valid (and in fact false for the example at hand). While it
is true that customers arriving at an early slot can be served in time by the ‘deterministic servers’
with probability 1, customers arriving in later slots can never complete their service in time. For
‘random servers’ instead, customers arriving early may not finish their service in time but on the
other hand customers arriving late still have a chance of completing their service.

20 40 60 80 100

0

0.5

1

i

ω
i
(N

)

exponential
deterministic
Pareto

FIGURE 4. Values of ωi(N), the probability that a customer arriving in the i-th time
slot is still in the system at time 1, where N = 100, E = 0.5.

In our example, this is reflected in the values of ωi(N): bearing in mind that we fixed the value of
the mean service timeE, the arrival rates in the system with Pareto service times are thinned less in
early slots but more in later slots, compared to deterministic service times (see Fig. 4). That Pareto
service times turn out to be better is a result of the fact that the Pareto service times are smaller
than E with large probability, and hence the regime in which the Pareto servers outperform the
deterministic servers matters more than the regime in which the deterministic servers are better.
Formally, we have that the sum of ωi(N) is smallest in the case of Pareto servers, and hence,
SN =

∑N
i=1 Pois

(
Xiωi(N)

)
has the smallest exceedance probability in that case.

To further investigate this issue, it is instructive to compute the variance of the steady-state num-
ber of clients in the system for the three models for the infinite-server queue. To this end, we can
use the formulae that were provided in [9, Eqn. (2.31)] for the special case of exponential service
times, noting that they can analogously be derived for more general service time distributions. We
obtain

Var

(
N∑
i=1

Zi

)
= VarX

N∑
i=1

ω2
i (N) + EX

N∑
i=1

ωi(N).

In case the service times are typically considerably smaller than 1, this behaves as

N VarX

∫ 1

0
F 2(x)dx+N EX

∫ 1

0
F(x)dx ≈ N VarX

∫ ∞
0

F 2(x)dx+N EX
∫ ∞

0
F(x)dx. (32)

In this decomposition the second part can be interpreted as the variance that one would obtain
if the arrival process were Poisson with a constant (non-random) rate EX , whereas the first part
is the contribution due to overdispersion. In our example, because X has a Poisson distribution,
EX = λ = VarX .
The mean number in the system in stationarity is

M∞ := N EX
∫ ∞

0
F(x)dx = N λE, (33)
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(A) Q̂N (a) (solid line) vs. Q̃N (a) (dashed line).

20 40 60 80 100
1

1.2

1.4

N

Q̃
N
(a
)
/ Q̂ N

(a
)

exponential
deterministic
Pareto

(B) Ratio of Q̃N (a) divided by Q̂N (a).

FIGURE 5. Comparison of crude Monte Carlo estimators Q̂N (a) and the approximation
Q̃N (a) as provided in Prop. 5.1. Parameters are chosen as E = 0.5, p = 0.75, λ1 = 1 and
λ2 = 5, with a = 1.6 for deterministic, a = 1.4 for exponential and a = 1.2 for Pareto
service times.

which shows that this term depends on the service-time distribution only through its mean E.
It thus follows that the second term in the right-hand side of (32) equals N λE. We now consider
the first (overdispersion-related) term. In the exponential case,∫ ∞

0
F 2(x)dx =

∫ ∞
0

e−2x/Edx =
E

2
;

in the deterministic case, ∫ ∞
0

F 2(x)dx =

∫ E

0
dx = E;

and in the Pareto(2) case, ∫ ∞
0

F 2(x)dx =

∫ ∞
0

(1 + x/E)−4dx =
E

3
.

These computations confirm that the variability in the number of clients in the system is highest
when the service times are deterministic, and lowest when they are Pareto(2). This entails that –
as we saw from the results in Table 1 – if there is overdispersion (i.e., VarX > 0), the Pareto(2) case
allows for a relatively conservative staffing policy, whereas in the deterministic case comparatively
many servers are required.
The table also shows that the required number of servers given by Na is, for obvious reasons,
larger than M1, the expected number of customers at time 1. At the same time, Na can be sub-
stantially lower than the expected number of customers in the system in stationarity (i.e., M∞, as
defined in (33)), due to the fact that the system has not necessarily reached stationarity at time
t = 1 (recall that the system starts empty at time 0).

5.2.2. Bursty arrival rate parameters. In a second example we assume that the arrivals are Poisson
and usually occur with a certain rate λ1, but occasionally occur with some larger rate λ2 (corre-
sponding to peak times in the network). Queueing networks with such ‘bursty’ arrival behaviour
are of interest in the context of cloud computing, see for example [14, 20].
Specifically, we assume that P(Xi = λ1) = p and P(Xi = λ2) = 1 − p =: p, where p is typically
substantially larger than 1

2 . A routine calculation shows that

ΛX(ϑ) = log
(
peϑλ1 + peϑλ2

)
, Λ′X(ϑ) =

λ1pe
ϑλ1 + λ2pe

ϑλ2

peϑλ1 + peϑλ2
, Λ′′X(ϑ) =

pp(λ1 − λ2)2eϑ(λ1+λ2)

(peϑλ1 + peϑλ2)
2 .
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TABLE 2. Parameters are chosen as in Table 1, with arrival rate parameters p = 0.75,
λ1 = 1 and λ2 = 5 (so that the expected arrival rate is 2).

F ε E a (ε) Na dM1e
[
Q̂N (a (ε))± CI

2

] /
ε
(
Q̃N (a), Q̃N (a)

)/
ε

Ex
po

ne
nt

ia
l 10−3

0.05 0.2662 27 10 0.7501± 0.0017 (1.4061, 0.8115)

0.5 1.2991 130 87 0.9002± 0.0019 (1.2266, 0.9787)

1 1.8061 181 127 0.8576± 0.0018 (1.1182, 0.9307)

10−4

0.05 0.3056 31 10 0.7199± 0.0053 (1.4107, 0.7615)

0.5 1.3942 140 87 0.8089± 0.0056 (1.1124, 0.8601)

1 1.9234 193 127 0.8230± 0.0056 (1.0742, 0.8717)

D
et

er
m

in
is

ti
c 10−3

0.05 0.3012 31 10 0.6173± 0.0015 (1.0539, 0.6640)

0.5 1.5438 155 100 0.8215± 0.0018 (1.0708, 0.8934)

1 2.7487 275 200 0.9035± 0.0019 (1.1232, 0.9827)

10−4

0.05 0.3484 35 10 0.8783± 0.0058 (1.5388, 0.9209)

0.5 1.6632 167 100 0.8187± 0.0056 (1.0669, 0.8690)

1 2.9094 291 200 0.9316± 0.0060 (1.1532, 0.9905)

Pa
re

to
(2

) 10−3

0.05 0.2461 25 10 0.7264± 0.0017 (1.4490, 0.7888)

0.5 1.0381 104 67 0.8755± 0.0018 (1.2856, 0.7069)

1 1.4671 147 100 0.8651± 0.0018 (1.1606, 0.9393)

10−4

0.05 0.2817 29 10 0.5315± 0.0045 (1.1255, 0.5649)

0.5 1.1200 113 67 0.6948± 0.0052 (1.0002, 0.7408)

1 1.5688 157 100 0.9138± 0.0059 (1.2335, 0.9709)

As before, we evaluate the approximation provided in Prop. 5.1 numerically. The obtained ap-
proximations and the corresponding Monte Carlo estimates are depicted in Fig. 5. The counterpart
to Table 1 is Table 2, where the parameters are chosen as in Section 5.2.1 (we put λ1 = 1, λ2 = 5

and p = 0.75 so that the mean arrival rate is 2 as before). Compared to the previous example, it
seems that here the required number of servers is overall somewhat larger due to the greater vari-
ance of the Xi. The ordering of the service time distributions in terms of the required number of
servers remains the same as before: the queuing system with deterministic service times requires
the largest number of servers.

6. CONCLUSION

In this paper we considered an infinite-server queue with doubly stochastic Poisson arrivals,
where the arrival rate is resampled every N−α time units. Among the main contributions of the
paper are exact (non-logarithmic, that is) asymptotic expressions for PN (a), namely the tail dis-
tribution of the number of arrivals at a given time (for α > 3 or α < 1

3 ), as well as for QN (a), for
which we consider the tail probability of having more than Na customers in the system (for the
case α = 1).
As we saw for the specific example of exponentially distributed arrival rates, the asymptotic ex-
pression for PN (a) can have a rather intricate shape for α ∈

[
1
2 , 2
]
. We do, however, believe that it



26 MARISKA HEEMSKERK, JULIA KUHN, MICHEL MANDJES

is possible to derive the asymptotics for the cases α ∈
[

1
3 ,

1
2

)
and α ∈ (2, 3] by using more precise

bounds based on the Berry-Esseen inequality.
In numerical examples we showed how the approximation for QN (a) can be useful when deter-
mining the required number of servers such that at a specific time t (e.g. a certain time of the day)
a specific performance target is met. This staffing rule could be extended to one that achieves the
desired performance level during an extended period of time, rather than at a single time point.
We expect that this requires more refined techniques, since the staffing level at a certain point in
time affects the number of customers present in the subsequent time interval. However, we feel
that the procedure developed in this paper may serve as a reasonably accurate proxy.
Finally, we believe that it is possible to extend the results of the paper by relaxing the assumption
that the arrival rates are independent and identically distributed. Instead, one could consider
the situation in which the arrival rates in subsequent time intervals depend on each other in a
Markovian fashion. Another interesting topic relates to the infinite-server model in which the
random rate of the arrival process changes continuously (rather than being redrawn periodically,
and then being valid for the rest of the interval); in this context we could for instance consider a
Coxian arrival process with a shot-noise rate [13].
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