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Abstract

Relying only on the classical Bahadur-Rao approximation for large deviations of univariate
sample means, we derive strong large deviation approximations for probabilities involving
two sets of sample means. The main result concerns the exact asymptotics (as n→∞) of

P
(

max
i∈{1,...,dX}

sXi,n 6 min
i∈{1,...,dY }

sYi,n

)
,

with the sXi,ns (sYi,ns, respectively) denoting dX (dY ) independent copies of sample means as-
sociated with the random variable X (Y ). Assuming EX > EY , this is a rare event probability
that vanishes essentially exponentially, but with an additional polynomial term. We also point
out how the probability of interest can be estimated using importance sampling in a logarith-
mically efficient way. To demonstrate the usefulness of the result, we show how it can be
applied to compare the order statistics of the sample means of the two populations. This has
various applications, for instance in queuing or packing problems.
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1 Introduction

Let the sequence (Xi)
n
i=1 ((Yi)ni=1, respectively) consist of i.i.d. samples, all of them distributed as

the random variable X (Y , respectively); in addition, the sequences are assumed to be mutually
independent. In a broad range of applications including, for example, queuing theory and finance,
it is relevant to quantify the behaviour of the probability, for n ∈ N,

α1(n) := P
(

sXn 6 sYn
)
,

with sXn and sYn denoting the sample averages

sXn :=
1

n

n∑
j=1

Xj , sYn :=
1

n

n∑
j=1

Yj .

We assume throughout that EX < EY , which entails that α1(n) corresponds to a rare event, and
therefore vanishes as n grows large. Large deviation (LD) theorems such as Cramér’s theorem
[6] provide asymptotic expressions that capture the rough (logarithmic, that is) asymptotics of
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probabilities of this form; in the situation described above they identify a number I > 0, usually
referred to as the decay rate, such that

lim
n→∞

1

n
logα1(n) = −I. (1)

While such results are often useful, they may also turn out to be inaccurate; much information on
the asymptotic behaviour of the probability can get lost when the logarithm of the probability is
considered rather than the probability itself. To illustrate, note that (1) is valid if α1(n) behaves
as (i) 109 · e−nI , (ii) n−100e−nI , or (iii) e

√
ne−nI , but obviously in none of these cases the ‘naïve’

approximation e−nI is accurate; see e.g. [11, p. 40] for a brief exposition on this. Approximations
to the probability itself, rather than its logarithm, are more scarce in the literature, and usually
referred to as strong, sharp or exact LD results. An important result on exact LD asymptotics is
due to Bahadur and Rao [3]; under some conditions (including the requirement that X − Y has a
finite moment generating function in a neighbourhood of the origin), it states that α1(n) decays as
a product of a polynomial and an exponential factor, in that, as n→∞,

α1(n) ∼ C√
n
e−nI ,

for positive constants C and I (where f(n) ∼ g(n) denotes that f(n)/g(n)→ 1 as n→∞).
A natural next question concerns the context in which there are d independent copies of each of
the sample means. More specifically, with sX1,n up to sXd,n (sY1,n up to sYd,n, resp.) being i.i.d. copies
of sXn (sYn, resp.), we wish to identify the exact asymptotics of

αd(n) := P (En) , with En :=

{
max

i∈{1,...,d}
sXi,n 6 min

i∈{1,...,d}
sYi,n

}
.

Some straightforward bounds on αd(n) can easily be found. It is for instance clear that a necessary
condition for En is that sXi,n 6 sYi,n for all i ∈ {1, . . . , d}, and hence the independence of the
individual sample means implies the following obvious asymptotic upper bound (in self-evident
notation):

αd(n) .
Cd

nd/2
e−ndI , (2)

as n → ∞ (with C and I as above). The main result of the present paper is that we show that (2)
is not tight: we prove that, for some C̃d > 0, as n→∞,

αd(n) ∼ C̃d

nd−
1
2

e−ndI (3)

(where obviously C̃1 = C). The proof relies on careful use of the Bahadur-Rao approximation for
all sample means involved.

The exact asymptotics of αd(n) do not follow from results that have appeared in the literature
before, as we point out now. We first observe that the setting introduced above can be cast in a
more general framework, involving d2 sample means. Indeed, with

sZn = ( sX1,n, . . . , sXd,n, sY1,n, . . . , sYd,n)T ∈ R2d,

we can write αd(n) = P(A sZn > 0), for an appropriately chosen d2 × 2d matrix A. Asymptotics
of probabilities of the type P(A sZn > b) are derived (for b ∈ Rd2), under specific conditions, by
Chaganty and Sethuraman in [5]; they typically have the form of a product of a constant, the
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polynomial function n−d
2/2, and a function that decays exponentially in n. Later on in this paper,

however, we will verify that for the event of our interest the conditions imposed in [5] are not met.
(Indeed, the polynomial decay term in our asymptotic form (3) is n−d+1/2, rather than the n−d

2/2

that one would obtain in the setting of [5].)

We extend the asymptotics of αd(n) in several ways. In the first place, in Thm. 1 we actually estab-
lish a slightly more general version of the above asymptotic equivalence, in which the number of
sample means sXi,n, say dX , does not necessarily coincide with the number of sample means sYi,n,
say dY . This result is then easily extended to the case where we consider sample means sXi,pin and
sYj,qjn where pi n, qj n ∈ N, see Equation (20). We also provide an importance sampling procedure
for estimating such probabilities fast and accurately, and we prove the underlying algorithm is
optimal in the sense that it is asymptotically efficient.
In addition, we apply our main result to derive probabilities of practical relevance. More con-
cretely, we obtain an asymptotic expression for the false rejection probability in log-likelhood ratio
testing, as well as for the probability of observing at least k ∈ {1, . . . , d} unordered pairs (where
the pair (i, j) is said to be unordered if sXi,n < sYj,n). The latter can be formulated in terms of a
comparison of order statistics, and may, for example, be understood as the probability that at least
k jobs cannot be served, or that at least k items cannot be packed.

The paper is organised as follows. In Section 2 we recall some preliminaries (in particular the
Bahadur-Rao result) and introduce our notation. Section 3 provides the decay rate of αd(n), and
we explain why this decay rate cannot be obtained from [5]. The result is illustrated by numerical
examples, and in this context we also devise an efficient simulation procedure. In Section 4 we
apply our main result to compare the order statistics of the sample means, again illustrated by an
example. We conclude in Section 5.

2 Preliminaries and notation

In this section we first recall the Bahadur-Rao result and its assumptions. We then describe our
setting, as was discussed in the introduction, more formally.

2.1 Bahadur-Rao result

Let (Zi)
n
i=1 be a sequence of i.i.d. random variables, distributed as a generic random variable Z.

Our results correspond to the light-tailed regime, as formalised in the following assumption.

A1 The moment generating function (mgf) MZ(θ) = E eθZ is finite in an open set containing the
origin.

We now define the Legendre transform (also referred to as the Legendre-Fenchel transform, or the
convex conjugate) of the logarithm of the mgf. With ΛZ(θ) := logMZ(θ) denoting the logarithmic
mgf (cumulant generating function), we define

IZ(a) := sup
θ∈R

[θa− ΛZ(θ)] .

A2 The optimising θ in the definition of IZ(a) exists (and is denoted by θZ(a)).

It is well-known [6, Lemma 2.2.5] that if a > EZ, then θZ(a) > 0; likewise, if a < EZ, then
θZ(a) < 0. Furthermore, the optimizing θZ(a) is easily seen to satisfy I ′Z(a) = θZ(a) as well as
Λ′(θ) = a. These facts we use repeatedly later on.
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We now consider the sample mean sZn := n−1
∑n

i=1 Zi. We fix an a > EZ. The Bahadur-Rao result
states that under assumptions A1–A2, for some positive and finite constant CZ(a), as n→∞,

P( sZn > na)
√
n enIZ(a) → CZ(a); (4)

see e.g. [6, Thm. 3.7.4]. The precise form of CZ(a) depends on whether Z corresponds to a non-
lattice or a lattice random variable. In this paper we focus on the non-lattice case, in which

CZ(a) =
1

θZ(a)
√

2πΛ′′Z(θZ(a))
.

The original result of Bahadur and Rao [3] on deviations of the sample mean has been extended
in several ways. Notably, there are local versions of it by Petrov [12], as well as results on the
uniformity of the convergence by Höglund [9]. A version not necessarily requiring the i.i.d. as-
sumption has been proven by Chaganty and Sethuraman in [4]. This result was further extended
into a multi-dimensional context in [5]: there exact asymptotics are established of the probability
that a vector of sample means is in a given rectangular set. Further extensions of [5] are found
in e.g. [1, 10]; there the set of interest is not necessarily rectangular but can have a more general
shape.
As pointed out in the introduction, the rare event studied in this paper can be rewritten in terms
of a vector of sample means attaining a value in a given rectangular set, and it may therefore
seem that we can use the results from [5]. In Section 3.2, however, we show that in our setting the
assumptions imposed in [5] are not satisfied.

2.2 Our model

We now define the setup considered in our main result (stated and proved in the next section). We
let (Xi,j)

n
j=1 (with i ∈ {1, . . . , dX}) be independent sequences of i.i.d. random variables Xi,j , all of

them distributed as the generic random variable X . Similarly, for i ∈ {1, . . . , dY } we define the
i.i.d. sequences (Yi,j)

n
j=1 with Yi,j ∼ Y . All sequences are assumed to be mutually independent.

Define the sample averages

sXi,n :=
1

n

n∑
j=1

Xi,j , i ∈ {1, . . . , dX}, sYi,n :=
1

n

n∑
j=1

Yi,j , j ∈ {1, . . . , dY } ,

where we assume EX > EY . Let MX(θ) := EeθX and MY (θ) := EeθY denote the moment gen-
erating functions of X and Y , respectively, and ΛX(θ) := logMX(θ) and ΛY (θ) := logMY (θ) the
corresponding logarithmic moment generating functions. Assume that A1–A2 are fulfilled for X
and Y .
As indicated previously, in this paper we focus on the non-lattice case, and more specifically, on
continuous random variables. We discuss this assumption in Section 3.1.

A3 The distributions of the random variables X and Y are continuous.

We now introduce a number of functions and quantities that are useful in Section 3. In the first
place it turns out to be convenient to define

adX ,dY := arg mina∈R JdX ,dY (a) =: a?, JdX ,dY (a) := dX IX(a) + dY IY (a) =: J(a) . (5)

Note that adX ,dY is guaranteed to exist due to the strong convexity of the Legendre transforms [6,
Exercise 2.2.24], and can be seen to lie between EY and EX . Note that since a? minimizes J(a?) it
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satisfies
dY θY (a?) = dY I

′
Y (a?) = −dXI ′X(a?) = −dXθX(a?) , (6)

where I ′X(a?) < 0 and I ′Y (a?) > 0, as a consequence of EY < a? < EX ; this ’symmetry’ will be
useful, particularly in Section 3.2. In addition we will need the function

KdX ,dY (a) :=
(
− CX(a)

)dXCY (a)dY dY I
′
Y (a) := K(a) ,

with CX(a) and CY (a) as defined in Section 2.1. Note here that CX(a) < 0 and CY (a) > 0; to see
this, bear in mind that θ−X(−a) = −θX(a).
For our exact asymptotics to hold, we further impose the following regularity condition.

A4 KdX ,dY (a) is continuous in a?, and CX or CY are differentiable in a neighbourhood of a?.

3 Exact asymptotics

In this section we provide in Thm. 1 the strong large deviations approximation of

αdX ,dY (n) := P (En) , with En :=

{
max

i∈{1,...,dX}
sXi,n 6 min

i∈{1,...,dY }
sYi,n

}
.

This means that our objective is to identify an explicit function f(n) such that αdX ,dY (n) ∼ f(n) as
n→∞; we say that we thus find the exact asymptotics of αdX ,dY (n).
The result and its proof are presented in Section 3.1. In Section 3.2 we explain why this result
cannot be obtained using the seemingly sufficiently general result [5, Thm. 3.4]. In Section 3.3 we
provide two numerical examples featuring normal and Poisson random variables, and point out
how these could be estimated efficiently relying on the importance sampling simulation method-
ology.

3.1 Main result

We first state the main result in Thm 1. It says that αdX ,dY (n) decays (roughly) exponentially,
where the decay rate is given by J(a?) (with a? as defined in (5)). The polynomial term is of the
power −(dX + dY )/2 + 1/2.

Theorem 1. Suppose that X and Y fulfil A1–A3, and in addition A4 applies. Then,

lim
n→∞

αdX ,dY (n) enJ(a?) n(dX+dY )/2−1/2 = K(a?)

√
2π

J ′′(a?)
. (7)

Proof. Assume first that CY is differentiable (which we can do, due to A4). Then our starting point
is the obvious identity (that is due to conditional independence)

αdX ,dY (n) =

∫ ∞
−∞

(
P
(

sY1,n > a
))dY P

(
max

i∈{1,...,dX}
sXi,n ∈ da

)
. (8)

If instead CX is differentiable, we can start from

αdX ,dY (n) =

∫ ∞
−∞

(
P
(

sX1,n 6 a
))dX P

(
min

i∈{1,...,dY }
sYi,n ∈ da

)
,

then proceed analogously We prove a lower and an upper bound of (8), which asymptotically
coincide.
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Lower bound: The first step is to just consider the contribution of a ∈ (a? − ε, a? + ε) in (8), where
we choose ε such that (a? − ε, a? + ε) is fully covered in the interval (EY,EX). The Bahadur-Rao
result [3], which holds due to A1–A2, entails that for any δ > 0 there is an n0 such that αdX ,dY (n)

majorizes for any n ≥ n0,

(1− δ)
∫ a?+ε

a?−ε

(
CY (a)√

n
e−nIY (a)

)dY
P
(

max
i∈{1,...,dX}

sXi,n ∈ da

)
; (9)

recall that the convergence in the Bahadur-Rao result holds uniformly [9, 12]. We proceed by
applying integration by parts. To this end, first define

g(a, n) := (1− δ)
(
CY (a)√

n
e−nIY (a)

)dY
P
(

max
i∈{1,...,dX}

sXi,n 6 a

)
∼ (1− δ)

(
CY (a)√

n
e−nIY (a)

)dY (
−CX(a)√

n
e−nIX(a)

)dX
;

where the asymptotic equality ‘∼’ again follows from the Bahadur-Rao result.
Applying integration by parts, we find that Expression (9) asymptotically equals the sum of three
terms:

−(1− δ)
∫ a?+ε

a?−ε

(
−CX(a)√

n
e−nIX(a)

)dX
dY

(
CY (a)dY −1C ′Y (a)− nCY (a)dY I ′Y (a)

ndY /2

)
e−ndY IY (a)da

+ g(a? + ε, n)− g(a? − ε, n). (10)

Recall that by e.g. [6, Lemma 1.2.15] the decay rate of the sum of three terms equals the largest of
the decay rates that correspond to the individual terms. By definition of a? and the function J(·),
for any ε > 0,

lim
n→∞

1

n
log g(a? ± ε, n) < −J(a?); (11)

later on it turns out that the first term in (10) has decay rate −J(a?), and hence this means that the
second and third term can be asymptotically neglected.
We therefore focus on the first term in (10), which can be checked to be asymptotically equal to

(1− δ)
∫ a?+ε

a?−ε

(
− CX(a)

)dXCY (a)dY

n(dX+dY )/2−1
dY I

′
Y (a) e−nJ(a)da.

Now define the convex functions hX(a) := IX(a) − IX(a?) and hY (a) := IY (a) − IY (a?), which
both equal 0 at a?. We thus find, for n sufficiently large,

αdX ,dY (n) enJ(a?) > (1− δ)
∫ a?+ε

a?−ε

(
− CX(a)

)dXCY (a)dY

n(dX+dY )/2−1
dY I

′
Y (a) e−n

[
dXhX(a)+dY hY (a)

]
da . (12)

We now study dXhX(a) + dY hY (a) around a = a?. Setting up a Taylor expansion of J(a) around
a?, we can find a positive function ψ(a) = o(a2) such that

dXhX(a) + dY hY (a) 6
1

2
J ′′(a?)(a− a?)2 + ψ(a− a?), J ′′(a?) :=

d2

da2
J(a)

∣∣∣∣
a=a?

> 0 , (13)

where we used that J(a) is convex and minimal at a?. Defining

κ(a?, ε) := inf
a∈(a?−ε,a?+ε)

KdX ,dY (a) = inf
a∈(a?−ε,a?+ε)

(
− CX(a)

)dXCY (a)dY dY I
′
Y (a).
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and applying the above upper bound (13) on dXhX(a) + dY hY (a), it follows that the right-hand
side of (12) majorizes

1− δ
n(dX+dY )/2−1

κ(a?, ε)

∫ ε

−ε
e−n[ 1

2
J ′′(a?)a2+ψ(a)]da. (14)

To further evaluate the integral in (14), we now apply the transformation b =
√
nJ ′′(a?) a (such

that db =
√
nJ ′′(a?) da), so that Expression (14) reads

1− δ
n(dX+dY )/2−1/2

κ(a?, ε)√
J ′′(a?)

∫ ε
√
nJ ′′(a?)

−ε
√
nJ ′′(a?)

e−b
2/2−nψ(b/

√
nJ ′′(a?))db.

As n → ∞, relying on ‘dominated convergence’, and recalling that ψ(a) = o(a2), the integral in
the previous display converges to a constant:∫ ε

√
nJ ′′(a?)

−ε
√
nJ ′′(a?)

e−b
2/2−nψ(b/

√
nJ ′′(a?))db→

∫ ∞
−∞

e−b
2/2db =

√
2π.

Combining this with (12), we have thus found the asymptotic lower bound, as n→∞,

lim inf
n→∞

αdX ,dY (n) enJ(a?) n(dX+dY −1)/2 > (1− δ)κ(a?, ε)

√
2π

J ′′(a?)
.

Recall that δ > 0 and ε > 0 were chosen arbitrarily. We thus obtain the lower bound: by letting
δ ↓ 0 and ε ↓ 0,

lim inf
n→∞

αdX ,dY (n) enJ(a?) n(dX+dY −1)/2 > K(a?)

√
2π

J ′′(a?)
, (15)

where K(a?) := limε→0 κ(a?, ε) (where we use A4).

Upper bound: The upper bound follows by showing that in (8) the contributions corresponding
to a 6 a? − ε (say α−dX ,dY (n)) and a > a? + ε (say α+

dX ,dY
(n)) are asymptotically negligible; the

contribution corresponding to the interval (a? − ε, a? + ε) (say α◦dX ,dY (n)) can be analyzed as in
the lower bound, in that it can be verified that, under the assumptions imposed,

lim sup
n→∞

α◦dX ,dY (n) enJ(a?) n(dX+dY −1)/2 6 K(a?)

√
2π

J ′′(a?)
.

Let us focus on π−dX ,dY (n), i.e., the contribution corresponding to (−∞, a? − ε] (as the contribution
due to the interval [a? + ε,∞) can be dealt with precisely analogously); our objective is to prove
that its exponential decay rate is strictly smaller than −J(a?). For all δ > 0 we can find an n0 such
that for n > n0, π−dX ,dY (n) is majorized by

(1 + δ)

∫ EY

−∞
P
(

max
i∈{1,...,dX}

sXi,n ∈ da

)
+ (1 + δ)

∫ a?−ε

EY
e−ndY IY (a) P

(
max

i∈{1,...,dX}
sXi,n ∈ da

)
; (16)

here a Chernoff bound argument is used in the second probability.
We start by considering the first term in (16). Suppressing the factor (1 + δ) for the moment, it can
be written as

P
(

max
i∈{1,...,dX}

sXi,n 6 EY
)

=
(
P
(

sXi,n 6 EY
))dX 6 e−ndXIX(EY ).
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Now observe that

dXIX(EY ) = dXIX(EY ) + dY IY (EY ) > dXIX(a?) + dY IY (a?) = J(a?).

We conclude that the decay rate of the first term of (16) is strictly smaller than −J(a?).

We now focus on the second term in (16). Using integration by parts, we obtain that this is smaller
than

(1 + δ)

[
e−ndY IY (a?−ε)P

(
sX1,n 6 a? − ε

)dX +

∫ a?−ε

EY
ndY I

′
Y (a)e−ndY IY (a)P

(
sX1,n 6 a

)dX da

]
. (17)

Since the event { sX1,n 6 a} is rare for a 6 a? − ε < EX , we can apply the Bahadur-Rao result to
P
(

sX1,n 6 a? − ε
)dX . Then, for large n, the first term in (17) behaves as

e−ndY IY (a?−ε)
(
−CX(a? − ε)√

n
e−nIX(a?−ε)

)dX
= e−nJ(a?−ε)ndX/2(−CX(a? − ε))dX .

Taking the logarithm and dividing by n we see that for large n the decay rate is −J(a∗− ε), which
is smaller than −J(a?).
Now consider the second term in (17), which is asymptotically equal to∫ a?−ε

EY
n1−dX/2dY I

′
Y (a)

(
− CX(a)

)dXe−nJ(a)da . (18)

Since the Legendre transform J(·) is convex, it follows that J(a) > J ′(a?−ε)(a−a?+ε)+J(a?−ε)
for any a, and thus (18) is at most

e−nJ(a?−ε)
∫ a?−ε

EY
n1−dX/2dY I

′
Y (a)

(
− CX(a)

)dXe−nJ ′(a∗−ε)(a−a?+ε)da .

Taking the logarithm and dividing by n, we obtain that the decay rate of the second term in (17)
is majorised by

−J(a? − ε) + lim sup
n→∞

1

n
log

∫ a?−ε

EY
dY I

′
Y (a)

(
− CX(a)

)dXe−nJ ′(a∗−ε)(a−a?+ε)da .

Since J is convex and takes its minimum at a?, the derivate at a? − ε is negative: J ′(a? − ε) < 0.
On (−∞, a? − ε] we also have a− a? + ε 6 0, and hence the exponential is at most 1. Hence,

lim sup
n→∞

1

n
log

∫ a?−ε

EY
dY I

′
Y (a)

(
− CX(a)

)dXe−nJ ′(a?−ε)(a−a?+ε)da

6 lim sup
n→∞

1

n
log

∫ a?−ε

EY
dY I

′
Y (a)

(
− CX(a)

)dXda = 0 .

We conclude that the decay rate of the second term in (17) is smaller than −J(a? − ε).
Combining the above findings, we have established that the asymptotic exponential decay rate of
α−dX ,dY (n) is strictly smaller than −J(a?) (i.e., the decay rate of α◦dX ,dY (n)).
As we mentioned above, an analogous procedure can be followed for the probability α+

dX ,dY
(n).

Combining all the above elements, it now follows that an asymptotic upper bound on αdX ,dY (n)

is given by

lim sup
n→∞

αdX ,dY (n) enJ(a?) n(dX+dY −1)/2 6 K(a?)

√
2π

J ′′(a?)
. (19)

The lower bound (15) and the upper bound (19) together yield the desired result (7).
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We focus here on continuous random variables (see A3) because it is otherwise not clear that a?

as defined in (5) is in the support of sXi,n and sYj,n, where the latter quantities depend on n. This,
however, is needed to ensure that the lower bound (9) is non-trivial. Note that the result can
be expected to hold more generally; clearly the random variables do not need to be continuous
everywhere, it is sufficient to assume that sXi,n and sYi,n are continuous in a neighbourhood of a?.
Moreover, the result can easily be adapted to the situation in which the individual sample means
correspond to different numbers of samples. We find that, for pin, qin ∈ N, as n→∞,

P
(

max
i∈{1,...,dX}

sXi,npi 6 min
i∈{1,...,dY }

sYi,nqi

)
(20)

∼ (−CX(a?))dX CY (a?)dY

n(dX+dY −1)/2

sq∏dX
i=1

√
pi
∏dY
j=1
√
qj
I ′Y (a?)

√
π

J ′′
sp,sq(a

?)
e−nJsp,sq(a?) ,

where now a? = arg mina Jsp,sq(a) with sp :=
∑dX

i=1 pi, and sq :=
∑dY

i=1 qi. This more general asymp-
totic relation may be useful in applications, for example those we mention in Section 4.

3.2 Comparison with earlier results

In this subsection we compare the main result, as derived in the previous section, with related
results from the literature. If dX = dY = 1, then the asymptotics of (3) could also be obtained
by applying the Bahadur-Rao result from [3] directly. Therefore, we first verify that indeed our
expression coincides with that of Bahadur and Rao in this case.
As mentioned earlier, the event of interest can be written in terms of dXdY inequalities involving
the sample means sXi,n and sYj,n, which suggests that we can analyse the probability αdX ,dY (n)

using the results from [5]. In case dX > 1 and dY > 1, however, we show that one of the conditions
imposed in [5] is not fulfilled, entailing that our result is thus new for this case. (If either dX = 1

or dY = 1, then the result from [5] does apply.)

The case dX = dY = 1. Consider first the case where d := dX = dY = 1. Define the sample mean
sZn := n−1

∑n
j=1(Yj − Xj), and note that from the Bahadur-Rao approximation stated in (4) we

have

α1,1(n) = P
(

sZn > 0
)
∼ CZ(0)√

n
e−nIZ(0) . (21)

In order to compare this with (7), we first check that θZ(0) = θY (a?) = −θX(a?), where the latter
equality holds by (6). We thus have that θY (a?) solves a?−Λ′Y (θ) = 0 as well as−a?+Λ′X(−θ) = 0.
In conclusion, θY (a?) is the unique solution to Λ′Z(θ) = Λ′Y (θ)− Λ′X(−θ) = 0, and hence θY (a?) =

θZ(0). With this relationship it is now readily checked that J(a?) = IZ(0). Note that

J ′′(a) = a
[
θ′′X(a) + θ′′Y (a)

]
+ 2

[
θ′X(a) + θ′Y (a)

]
−
[
θ′′X(a)Λ′′X

(
θX(a)

)
+ θ′′Y (a)Λ′′Y

(
θY (a)

)
+ θ′X(a)2Λ′′X

(
θX(a)

)
+ θ′Y (a)2ΛY

(
θY (a)

)]
.

Because θ′(a) = 1/Λ′′
(
θ(a)

)
and Λ′

(
θ(a)

)
= a, this reduces to

J ′′(a) =
1

Λ′′X
(
θX(a)

) +
1

Λ′′Y
(
θY (a)

) .

9



We then obtain

K(a?)

√
2π

J ′′(a?)
= − 1

θX(a?)
√

2πΛ′′X
(
θX(a?)

) 1

θY (a?)
√

2πΛ′′Y
(
θY (a?)

)θY (a?)

√
2π

J ′′(a?)

=
1

θY (a?)
√

2π
[
Λ′′X
(
θX(a?)

)
+ Λ′′Y

(
θY (a?)

)] = CZ(0) .

Thus, we conclude that (7) reduces to (21) if d = 1.

The case dX > 1 and dY > 1. Now we consider the case that both dX > 1 and dY > 1 and show
that our result does not fall in the framework of [5]. As was already briefly pointed out in the
introduction, we can rewrite αdX ,dY (n) as P(A sZn > 0), where

sZn = ( sX1,n, . . . , sXdX ,n,
sY1,n, . . . , sYdY ,n)T,

andA an appropriately chosen matrix of dimension dXdY ×(dX +dY ). In [5, Thm. 3.4] it is proved
that, conditional on certain assumptions being satisfied, for positive constants C and I ,

P(A sZn > 0) ∼ C

n(dX dY )/2
e−nI .

In Thm. 1 we showed that the polynomial factor in the asymptotics is of the form n−(dX+dY )/2+1/2

rather than n−(dX dY )/2; in this section we show that this seeming inconsistency is due to the fact
that [5, Condition (B)] is not met. Observe that if dX = 1 or dY = 1 the powers match; we therefore
consider the situation that both dX and dY are strictly larger than 1.
Let us first define the multivariate cumulant function. To this end, we write ĎWij,n = sYj,n − sXi,n,
with i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }; observe that the probability of our interest equals
P(ĎWn > 0), where ĎWn is the dXdY -vector with entriesWij,n. Then the corresponding multivariate
moment generating function is given by

M(θ) :=

dY∏
j=1

E
[
eYj

∑dX
i=1 θi,j

] dX∏
i=1

E
[
e−Xi

∑dY
j=1 θi,j

]
,

and hence the multivariate cumulant function equals

Λ(θ) := logM(θ) =

dY∑
j=1

ΛY

(
dX∑
i=1

θi,j

)
+

dX∑
i=1

ΛX

(
−

dY∑
i=1

θi,j

)
.

Let θ? solve Λ′(θ) = 0; it is readily checked that all dX dY entries of θ? are equal (say, have
value τ ), and solve the equation Λ′Y

(
dXτ

)
= Λ′X

(
− dY τ

)
. Then [5, Condition (B)] states that

the determinant of the Hessian of Λ(θ?) should be different from 0. An elementary computation
yields that the elements of this Hessian are given by, with k,sk ∈ {1, . . . , dX} and `, s` ∈ {1, . . . , dY },

∂2Λ(θ)

∂θk,`∂θsk,s`

= r`1{` = s`}+ sk1{k = sk}, r` := Λ′′Y

(
dX∑
i=1

θi,`

)
, sk := Λ′′X

− dY∑
j=1

θk,j

 .

Let R(θ) := diag{r} and S(θ) := diag{s}; in addition, E is a dX × dX all-ones matrix, and F a
dY × dY all-ones matrix. Then we can write the Hessian compactly by

H(θ) = R(θ)⊗ E + F ⊗ S(θ) ,

10



where ⊗ denotes the Kronecker product. Let ek be the k-th dX -dimensional unit row vector (i.e.,
ek ∈ RdX such that the k-th entry is 1 and all other entries 0). Likewise, f` denotes the `-th dY -
dimensional unit row vector. Then define, for arbitrary k 6= sk and ` 6= s` (which is possible as
dX > 2 and dY > 2),

v := (ek ⊗ f`)− (ek ⊗ fs`)− (e
sk ⊗ f`) + (e

sk ⊗ fs`).

It is then an elementary computation to conclude that vH(θ?) = 0, and hence H(θ?) is singular.
We conclude that [5, Condition (B)] does not apply.
The intuitive reason for the violation of the condition is that some of the dX dY restrictions are
essentially redundant. For example, if dX = dY = 2, then sY1,n − sX1,n > 0 will usually occur by
a realisation in which sY1,n ≈ sX1,n, and similarly for sY1,n − sX2,n > 0 and sY2,n − sX1,n > 0. Thus,
informally speaking, these three conditions boil down to requiring that sY1,n ≈ sX1,n ≈ sY2,n ≈ sX2,n.
As a consequence, the fourth constraint, i.e., sY2,n − sX2,n > 0, is already ensured to hold by the
first three conditions with high likelihood. With this line of reasoning it also becomes intuitively
clear that we should have n−(dX+dY )/2+1/2 as a pre-factor, as we obtained in (7). Informally, [5,
Condition (B)] ensures that none of the restrictions imposed by ĎWn > 0 is redundant.

The case dX = 1 or dY = 1. We finally show that in case dX = 1 or dY = 1 the result from [5] does
apply. This can be seen as follows. Let us assume that dX = d ≥ 1 and dY = 1 (the opposite case
works analogously). Then by Sylvester’s theorem it follows that

|H(θ)| = |S(θ)|
∣∣I + S(θ)−1rE

∣∣ .
Note that S(θ)−1rE is a matrix with rows (r/sk, . . . , r/sk). Furthermore, |S(θ)| =

∏d
k=1 sk. It can

then be checked that

|H(θ)| =
∑
x∈χ

d∏
i=1

xi ,

where χ denotes the set of all combinations of length d from {r, s1, . . . , sd} (hence, |χ| = d + 1).
Now, inserting r = Λ′′Y

(
dτ
)

and sk = Λ′′X
(
− τ
)
, we obtain that the determinant of H(θ?) is non-

zero:
|H(θ?)| = dΛ′′X

(
− τ
)d−1

Λ′′Y
(
dτ
)

+ Λ′′X
(
− τ
)d
.

Invoking (6) we note that dτ = θY (a?) = −dθX(a?). Thus, the result from [5] states that

αd,1(n) ∼ 1

(2πn)d/2

(
dΛ′′X

(
θX(a?)

)d−1
Λ′′Y
(
θY (a?)

)
+ Λ′′X

(
θX(a?)

)d)−1/2
e
n
[
dΛX

(
θX(a?)

)
+ΛY

(
θY (a?)

)]
.

This can be checked to be equivalent to the expression given in Thm. 1, using that

J ′′d,1(a?) =
d

Λ′′X(θX(a?))
+

1

Λ′′Y (θY (a?))
.

3.3 Examples and importance sampling

In this subsection we work out two examples with Gaussian and exponentially distributed ran-
dom variables, respectively. In addition, we point out how to set up a provably asymptotically
efficient importance sampling procedure for general random variables satisfying A1-A2.

11



1. Gaussian. In this example we let X ∼ N (µX , σ
2
X), Y ∼ N (µY , σ

2
Y ) and fix n. We have

Λ−X(θ) = −θµX +
1

2
σ2
Xθ

2 ,

so that θ−X(−a) = −(a− µX)/σ2
X = −θX(a). It follows directly that

I−X(−a) =
1

2

(
a− µX
σX

)2

= IX(a) .

A similar procedure can be followed for Y . Furthermore, note that J(a) = dXIX(a)+dY IY (a)

is minimized by

a? =
dXµXσ

2
Y + dY µY σ

2
X

dXσ2
Y + dY σ2

X

;

indeed, as we remarked earlier, this quantity lies in the interval (µY , µX). We thus arrive at
the following expression for the decay rate of αdX ,dY (n):

J(a?) =
dXdY

2

(µY − µX)2

dY σ2
X + dXσ2

Y

.

For dX = dY = 1 and σX = σY this is just the Kullback-Leibler divergence betweenX and Y .
Moreover, note that

θ−X(−a?) = − dY (µY − µX)

dXσ2
Y + dY σ2

X

, θY (a?) =
dX(µX − µY )

dXσ2
Y + dY σ2

X

,

and hence

−CX(a?) = −
dXσ

2
Y + dY σ

2
X

dY (µY − µX)
√

2πσ2
X

, CY (a?) =
dXσ

2
Y + dY σ

2
X

dX(µX − µY )
√

2πσ2
Y

(which can both be checked to be positive). With I ′Y (a?) = θY (a?), we can then compute
K(a?).

2. Exponential. The logarithmic mgf of an exponential random variable with parameter λ is, for
θ < λ, given by Λ(θ) = log λ − log(λ − θ), so that (with θ(a) = λ − 1/a, assuming a 6= 0),
I(a) = λa− 1− log(λa). For exponential X and Y with λX < λY we thus have

J(a) = a (dXλX + dY λY )− (dX + dY )
(

log(a) + 1
)
− dX log(λX)− dY log(λY ) ,

which is minimal at
a? =

dX + dY
dXλX + dY λY

.

We obtain
θ−X(−a?) = −dY (λX − λY )

dX + dY
, θY (a?) =

dX(λY − λX)

dX + dY

(thus, indeed θ−X(−a?) < λX and θY (a?) < λY , and hence the mgf s are defined at these
points). We have

CX(a?) =
dXλX + dY λY√
2πdY (λX − λY )

, CY (a?) =
dXλX + dY λY√
2πdX(λY − λX)

and J(a?) = −(dX + dY ) log(a?)− dX log(λX)− dY log(λY ).
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Our asymptotic results describe how αdX ,dY (n) behaves as n → ∞, but do not provide any error
bound for a given n0 ∈ N. This explains the interest in devising efficient simulation procedures.
As is known from the literature [2], direct (naïve) procedures do not work for small probabilities,
as the number of experiments needed to obtain an estimate with a given precision (defined as the
ratio of the standard error of the estimate and the estimate itself) is roughly inverse proportional to
the probability to be estimated. We describe here an importance sampling algorithm that resolves
this issue.
Let fX(·) be the density ofX , and fY (·) the density of Y . Now associate the alternative probability
measure Q with the system in which the Xi,k and Yj,` are sampled according to the densities

gX(x) =
eθX(a?)x

MX(θX(a?))
fX(x), gY (y) =

eθY (a?)y

MY (θY (a?))
fY (y) .

Recall that a? minimizes J(a), and therefore solves −dXθX(a) = dY θY (a) (where it is used that
I ′X(a) = θX(a) and I ′Y (a) = θY (a)). It is readily checked that EX > EY implies that θX(a) < 0

and θY (a) > 0.

The idea is to sample all Xi,k and Yj,` under the newly constructed measure Q, but to weight the
simulated output by a likelihood ratio (which can by interpreted as a Radon-Nikodym derivative).
We now point out how a single unbiased sample is drawn; to estimate the probability of interest
reliably, the average of a number of such samples needs to be taken. The usual change-of-measure
argument entails that, in self-evident notation,

αdX ,dY (n) = EQ
[
L1{En}

]
, where L :=

(
dX∏
i=1

n∏
k=1

LX(Xi,k)

) dY∏
j=1

n∏
`=1

LY (Yj,`)

 ,

with the ‘per-sample likelihood ratios’ defined by

LX(x) = MX(θX(a?))e−θX(a?)x, LY (y) = MY (θY (a?))e−θY (a?)y .

We now analyse the variance performance of the resulting estimator. It is said [2, 11, 13] that the
latter is asymptotically efficient if it satisfies

lim sup
n→∞

1

n
logEQ(L2

1{En}) 6 lim sup
n→∞

2

n
logEQ(L1{En}) = −2J(a?) .

To this end, we first rewrite EQ(L2
1{En}) as

(
MX(θ(a?))

)2ndX(MY (θ(a?))
)2ndY EQ

[
e−2θX(a?)

∑dX
i=1

∑n
k=1Xi,ke−2θY (a?)

∑dY
j=1

∑n
`=1 Yj,`1{En}

]
.

The next step is to bound, on the event En, the exponential term. To this end, note that, on En,
for all i ∈ {1, . . . , dX} and j ∈ {1, . . . , dY }, we have that

∑n
k=1 Yi,k >

∑n
`=1Xj,`. Summing this

inequality over all i and j and dividing by dXdY we obtain, on En,

1

dX

dX∑
i=1

n∑
k=1

Xi,k 6
1

dY

dY∑
j=1

n∑
`=1

Yj,` .

13



It now follows that, recalling that −dXθX(a?) = dY θY (a?),

−θY (a?)

dY∑
i=1

n∑
k=1

Yi,k = −dY θY (a?)
1

dY

dY∑
i=1

n∑
k=1

Yi,k

6 −dY θY (a?)
1

dX

dX∑
j=1

n∑
`=1

Xj,`

= dXθX(a?)
1

dX

dX∑
j=1

n∑
`=1

Xj,` = θX(a?)

dX∑
j=1

n∑
`=1

Xj,` ,

from which we conclude that, for any n ∈ N,

EQ

[
e−2θX(a?)

∑dX
i=1

∑n
k=1Xi,ke−2θY (a?)

∑dY
j=1

∑n
`=1 Yj,`1{En}

]
6 1 .

This yields the desired inequality:

lim sup
n→∞

1

n
logEQ

[
L2

1{En}
]
6 2dX ΛX(θX(a?)) + 2dY ΛY (θY (a?))

= −2a? [dXθX(a?) + dY θY (a?)] + 2dX ΛX(θX(a?)) + 2dY ΛY (θY (a?))

= −2J(a?) .

We have thus found the following result.

Proposition 1. The measure Q yields an asymptotically efficient procedure for estimating αdX ,dY (n).

In the remainder of this section we examine the accuracy of approximation by the exact asymp-
totics of αdX ,dY (n). With the proposed importance sampling procedure, and inserting the ex-
plicit expressions we found for Gaussian and Exponential random variables, we can compare the
asymptotic formula given by Thm. 1 to the probabilities as estimated by simulation. Some exam-
ples are provided in Fig. 1. The two examples indicate that the approximation tends to be more
accurate if (i) dX and dY are smaller or (ii) if the means of X and Y differ more. The former could
be a consequence of the additional approximation steps we used compared to Bahadur and Rao
in order to extend their result. The latter may be due to the fact that in this case the event is more
rare so that the applied LD approximations are more accurate.

4 Applications and further refinements

Motivated by specific practical applications, we now study two variants of our main result.

4.1 Probability of at least one sample mean pair not being ordered

It is directly seen that Thm. 1 allows us to conclude that

P
(

min
i∈{1,...,dX}

sXi,n 6 max
i∈{1,...,dY }

sYi,n

)
∼

dX∑
i=1

dY∑
j=1

P
(

sYj,n − sXi,n > 0
)

(22)

because the decay rate corresponding to events
{

sYj,n − sXi,n > 0
}

is − infa J1,1(a), which is larger
than the rate functions corresponding to any number of intersections of such events given that
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(a) Gaussian random variables, µY = 1, σX = σY = 2.
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(b) Exponential random variables, λX = 2.8.

Figure 1: Ratio of the asymptotic expression (7) and simulated probabilities αdX ,dY (n). The dotted
horizontal line indicates a ratio of 1.

those correspond to infa Ji,j(a) for i + j > 2. Then the asymptotic relation (22) follows from the
inclusion-exclusion principle. It is thus evident that

P
(

min
i∈{1,...,dX}

sXi,n 6 max
i∈{1,...,dY }

sYi,n

)
∼ dXdY P

(
sX1,n 6 sY1,n

)
∼ e−nJ1,1(a1,1) 1√

n
dXdYK1,1(a1,1)

√
2π

J ′′1,1(a1,1)
.

This probability has applications in log-likelihood ratio (LLR) testing. Note that LLR test statis-
tics take the form of a sample mean. Thus, the probability (22) may be understood as the false
classification probability for the problem of discriminating between two populations X and Y .
For a more specific example, suppose dX signals are sent from an echo sounding system, and in
return dX + dY echoes are received, dY of which have to thus to be identified as noise. If this
echo sounding experiment is carried out n times, the probability of wrongly discarding a signal as
noise can be evaluated as a probability of the form (22).
If we relax the assumption that the distributions of X and Y are known (for example, replace the
mgf s of X and Y by their maximum likelihood estimators), one may also think of applications in
ordinal optimization problems such as stochastic bandit problems, see e.g. [7, 8].

4.2 Existence of at least k unordered sample mean pairs

Denote the order statistics of the sample means of X and Y by sX(i),n and sY(j),n; we assume that
these order statistics have been put in decreasing order. We here focus on the evaluation of the
probability 1− P

(
sX(1),n > sY(1),n, . . . , sX(d),n > sY(d),n

)
, or, more generally (as we can put k = 1)

βd,k(n) := P
(
∃i ∈ {1, . . . , d− k + 1} : sX(i),n 6 sY(k+i−1),n

)
, (23)

which is the probability that for every bijection mapping the set of indices of sXn to the set of
indices of sYn there exist at least k unordered pairs (the pair (i, j) is unordered if sXi,n < sYj,n).
For a potential application of this type of probability, think of the following packing problem.
We have d ships with n containers, and dnc items that need to be packed onto these ships. We
assume that the items are separated into d loads (for example, they came from d trucks) of n
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batches of c items. The expected capacity of each container is µX – the actual capacity is random
(for example, it might be that the containers arrive more or less empty than expected). The total
observed capacity of ship i is n sXi,n. The items have an expected size of µY /c, so that each batch of
c items has an expected size of µY . The total size of load j is nsYj,n. After observing n sXi,n and nsYj,n

each of the d loads needs to be brought to a ship and packed into the containers. In this case the
question of whether the full load can be packed (if the batches are assigned carefully) boils down
to whether or not there exists a perfect matching of order statistics. More generally we can ask for
the probability that at least k loads cannot be packed, which is given by (23).
For another application, suppose that we want to assign memory space/server capacities to serve
d batches/queues of jobs. Suppose there are np ∈ N jobs in each batch. (As we remarked in (20) it
is easy to adapt our results for the case where one of the populations has sample size pn instead
of n.) The expected job size/duration is µY . The size of the jobs in batch i amounts to npsYi,np.
Each batch has to be assigned to one of d server pools, each with n servers with expected capacity
EX . The actual service capacity of server pool j amounts to n sXj,n. Clearly a quantity of interest
is of the form (23), which can be interpreted as the probability that at least k job batches cannot be
served.
The main result of this subsection is as follows. It states that the asymptotics of βd,k(n) are essen-
tially determined by those of αdX ,dY (n).

Proposition 2. Assume that A1-A4 hold, and in addition that i? defined by

i? := arg mini∈{1,...,d−k+1} Jd−i+1,k+i−1(Ai), (24)

with Ai := ad−i+1,k+i−1, is unique. Then,

βd,k(n) ∼

(
d

k + i? − 1

)(
d

d− i? + 1

)
αd−i?+1,k+i?−1(n) . (25)

Proof. Define a? := Ai? . First, we note that we can write

P
(
X(i),n 6 Y(i+k−1),n

)
=

(
d

k + i− 1

)(
d

d− i+ 1

)
P
(

min
j∈{1,...,k+i−1}

sYj,n > max
j∈{i,...,d}

sXj,n,

min
j∈{1,...,k+i−1}

sYj,n > max
j∈{k+i,...,d}

sYj,n, max
j∈{i,...,d}

sXj,n 6 min
j∈{1,...,i−1}

sXj,n

)
.

The probability on the right-hand side can be computed as∫ ∞
−∞

∫ ∞
a

P
(

max
j∈{k+i,...,d}

sYj,n 6 b

)
P
(

min
j∈{1,...,k+i−1}

sYj,n ∈ db

)
P
(

max
j∈{1,...,i−1}

sXj,n > a

)
P
(

max
j∈{i,...,d}

sXj,n ∈ da

)
.

(26)

We again prove a lower and an upper bound which asymptotically coincide.

Lower bound: A lower bound for (26) is given by∫ a?+ε

a?−ε

∫ a?+ε

a
P
(

max
j∈{k+i,...,d}

sYj,n 6 a? − ε
)
P
(

min
j∈{1,...,k+i−1}

sYj,n ∈ db

)
P
(

max
j∈{1,...,i−1}

sXj,n > a? + ε

)
P
(

max
j∈{i,...,d}

sXj,n ∈ da

)
,
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which asymptotically equals∫ a?+ε

a?−ε

∫ a?+ε

a
P
(

min
j∈{1,...,k+i−1}

sYj,n ∈ db

)
P
(

max
j∈{i,...,d}

sXj,n ∈ da

)
.

This can be rewritten as∫ a?+ε

a?−ε
P
(

min
j∈{1,...,k+i−1}

sYj,n > a

)
P
(

max
j∈{i,...,d}

sXj,n ∈ da

)
−
∫ a?+ε

a?−ε
P
(

min
j∈{1,...,k+i−1}

sYj,n > a? + ε

)
P
(

max
j∈{i,...,d}

sXj,n ∈ da

)
.

This lower bound holds for any i; we pick i = i?. The above expression is asymptotically equal to,
with sd := d− i? + 1 and sk := k + i? − 1,

α
sd,sk(n)− CY (a? + ε)

sk

nsk/2
e−n

skIY (a?+ε)

×
[
CX(a? − ε) sd

n sd/2
e−n

sdIX(a?−ε) − CX(a? + ε)
sd

n sd/2
e−n

sdIX(a?+ε)

]
= α

sd,sk(n)− CY (a? + ε)
sk

nsk/2
e−nJ sd,sk(a?+ε)

×
[
CX(a? − ε) sd

n sd/2
en

sd
[
IX(a?+ε)−IX(a?−ε)

]
− CX(a? + ε)

sd

n sd/2

]
where α

sd,sk(n) is as in Section 3.
Recall that the exponential term in α

sd,sk(n) is J
sd,sk(a

?). Since a? minimizes J
sd,sk (a), we have that

exp(−nJ
sd,sk(a

?)) asymptotically dominates exp(−nJ
sd,sk(a

?+ ε)). Furthermore, recall that a? < EX ,
and therefore IX(a?+ε)−IX(a?−ε) < 0. We thus conclude that the lower bound is asymptotically
equal to α

sd,sk(n).

Upper bound: We can simply replace probabilities in (26) by one to obtain that∫ ∞
−∞

∫ ∞
a

P
(

min
j∈{1,...,k+i−1}

sYj,n ∈ db

)
P
(

max
j∈{i,...,d}

sXj,n ∈ da

)
is an upper bound for (26). Since this is equal to∫ ∞

−∞
P
(

min
j∈{1,...,k+i−1}

sYj,n > a

)
P
(

max
j∈{i,...,d}

sXj,n ∈ da

)
,

the results of Section 3 state that an upper bound is given by αd−i+1,k+i−1(n), which thus coincides
with the lower bound. We thus find, asymptotically,

P
(
X(i),n 6 Y(k+i−1),n

)
∼

(
d

k + i− 1

)(
d

d− i+ 1

)
αd−i+1,k+i−1(n) . (27)

It now follows that

βd,k(n) .
d−k+1∑
i=1

(
d

k + i− 1

)(
d

d− i+ 1

)
αd−i+1,k+i−1(n) .

Asymptotically what matters is the dominating summand given by i? as defined in (24); as n→∞
the other summands are asymptotically negligible (under the uniqueness assumption that we
imposed). Since every single summand is a lower bound for βd,k(n), we then have the asymptotic
relation (25).
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If there is no unique optimiser i?, we have proven the asymptotic upper bound

βd,k(n) 6
∑
i∈I∗

(
d

k + i− 1

)(
d

d− i+ 1

)
αd−i+1,k+i−1(n) , (28)

where I∗ denotes the set of optimising i ∈ {1, . . . , d− k+ 1}. Furthermore, every summand of the
right-hand side is an asymptotic lower bound.
One may now wonder whether the upper bound in (28) is asymptotically tight. Observe that the
inequality in (28) is essentially a Bonferroni inequality, and one might expect that probabilities
of intersections of the corresponding events are asymptotically negligible, in which case by the
inclusion-exclusion principle the upper bound would be asymptotically tight (similar to the ar-
gument we gave in Section 4.1). The following heuristic argument indicates, however, that this
reasoning is not valid in this case, and this is confirmed numerically in the example provided
below.
In our example we consider the simplest case possible: we suppose that d = 2 and k = 1. We
define the events

Ei,j :=
{

sXi,n 6 sYj,n
}
, Fi,j :=

{
sX(i),n 6 sY(j),n

}
,

where i, j ∈ {1, 2}. We have

β2,1(n) = P (F1,1 ∪ F2,2) = P (F1,1) + P (F2,2)− P (F1,1 ∩ F2,2) .

It is directly verified that

P(E1,1 ∩ E1,2) = P(E2,1 ∩ E2,2), P(E1,1 ∩ E2,1) = P(E1,2 ∩ E2,2), P(E1,1 ∩ E2,2) = P(E1,2 ∩ E2,1) .

Furthermore, relying on arguments similar to those used in Section 3.2, it follows that some events
essentially imply each other, in that

P(E1,1 ∩ E2,1 ∩ E2,2) ≈ P(E1,1 ∩ E2,2) , P(E1,2 ∩ E2,1 ∩ E2,2) ≈ P(E1,2 ∩ E2,1) , . . .

and analogously for other probabilities of this form. Based on these findings, and applying ele-
mentary set theory, we have that P (F1,1) + P (F2,2) behaves as[

2P(E1,1 ∩ E1,2)− P(E1,1 ∩ E2,2)
]

+
[
2P(E1,1 ∩ E2,1)− P(E1,1 ∩ E2,2)

]
, (29)

whereas P (F1,1 ∩ F2,2) ≈ P(E1,1 ∩ E2,2). We conclude that this probability is thus not negligible
compared to (29), and as a consequence (28) is not asymptotically tight.

Gaussian example. We consider again the example with X and Y both being normally distributed,
as introduced in Section 3.3. First, assume that σX 6= σY . Define a differentiable function h : R→
R by

h(x) :=
1

2

(d− x+ 1)(k + x− 1)(µY − µX)2

(k + x− 1)σ2
X + (d− x+ 1)σ2

Y

.

As can be checked by an explicit calculation, we have that h′′(x) < 0, and hence h(·) is con-
cave. Note that for i ∈ {1, . . . , d − k + 1} we have Jd−i+1,k+i−1(Ai) = h(i). We conclude that
Jd−i+1,k+i−1(Ai) is concave as a function of i ∈ {1, . . . , d− k+ 1}, and thus takes its minima at the
boundaries, that is, for i ∈ {1, d−k+1}. A straightforward calculation reveals that Jd−i+1,k+i−1(Ai)

is minimized at i? = 1 if σY > σX , and at i? = d− k + 1 otherwise.
Now consider the case σX = σY . Then the function h(·) simplifies:

Jd−i+1,k+i−1(Ai) =
(d− i+ 1)(k + i− 1)

2σ2

(µY − µX)2

d+ k
.
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Figure 2: Ratio of the asymptotic bounds (30) and simulated probabilities βd,k(n), where d = 3,
k = 2, for Gaussian random variables with µX = 1, µY = 0.8, σ = 2. The dotted horizontal line
indicates a ratio of 1.

As before, this concave function can attain its minimum value only at the boundary points i ∈
{1, d − k + 1}, but note that at these points the function value is the same. Hence, from (28) we
have (

d

k

)
αd,k(n) 6 βd,k(n) 6

(
d

k

)[
αd,k(n) + αk,d(n)

]
. (30)

Numerical experiments such as Fig. 2 seem to confirm that these bounds are not tight, as was
argued earlier in this subsection.

5 Concluding remarks

We have derived exact asymptotics for the rare event probability that all sample means of a pop-
ulation Y exceed all sample means of an independent population X while EX > EY . The proof
heavily relies on Bahadur-Rao type asymptotics that describe the tail distribution of the sample
mean of i.i.d. random variables. Our result is new: it seemingly fits in the framework of [5], but
careful inspection shows that the conditions imposed in [5] are not met in our situation (and we
do obtain a different asymptotic form than that suggested in [5], with the polynomial factor being
n−d+1/2, rather than n−d

2/2). We also provide an asymptotically efficient importance sampling
procedure for estimating the probability of our interest.
We then showed that this result yields an expression for the exact asymptotics of the probability
that there exists a sample mean from Y that exceeds a sample mean from X , and pointed out the
relevance in log-likelihood ratio testing. We also used our result to derive the probability that
there are at least k unordered sample means in every possible matching of sample means between
X and Y ; we explained that this probability may be of practical interest for example in particular
queuing or packing problems.
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